
SecurityEval Dataset: Mining Vulnerability Examples to Evaluate
Machine Learning-Based Code Generation Techniques

Mohammed Latif Siddiq
msiddiq3@nd.edu

University of Notre Dame
Notre Dame, IN, USA

Joanna C. S. Santos
joannacss@nd.edu

University of Notre Dame
Notre Dame, IN, USA

ABSTRACT

Automated source code generation is currently a popular machine-
learning-based task. It can be helpful for software developers to
write functionally correct code from a given context. However,
just like human developers, a code generation model can produce
vulnerable code, which the developers can mistakenly use. For this
reason, evaluating the security of a code generation model is a must.
In this paper, we describe SecurityEval, an evaluation dataset to
fulfill this purpose. It contains 130 samples for 75 vulnerability
types, which are mapped to the Common Weakness Enumeration
(CWE). We also demonstrate using our dataset to evaluate one
open-source (i.e., InCoder) and one closed-source code generation
model (i.e., GitHub Copilot).

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software development techniques;
Software verification and validation.

KEYWORDS

dataset, common weakness enumeration, code generation, security
ACM Reference Format:

Mohammed Latif Siddiq and Joanna C. S. Santos. 2022. SecurityEval Dataset:
Mining Vulnerability Examples to Evaluate Machine Learning-Based Code
Generation Techniques. In Proceedings of the 1st International Workshop on
Mining Software Repositories Applications for Privacy and Security (MSR4P&S
’22), November 18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3549035.3561184

1 INTRODUCTION

Code generation techniques are used to generate functional source
code from a given prompt, which could be a comment, an expression
in the form of the function signature, or their mixture [2]. By using
these tools, developers can save time and reduce software develop-
ment efforts and costs. Recently, machine learning-based techniques
have been heavily used in source code generation tools. Large Lan-
guage Learning Models (LLM) using attention-based transformer
technique [30] are pre-trained with textual data, including source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR4P&S ’22, November 18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9457-4/22/11. . . $15.00
https://doi.org/10.1145/3549035.3561184

code snippets. Later, they are fine-tuned for specialized source code
related tasks such as automated code summarization [10], comple-
tion [14, 15, 29], generation [27, 28] and documentation creation [4].

Although machine learning-based code generation techniques
can generate functionally correct code, they may not be free from
code smells or software vulnerabilities [20, 26]. Since they are
trained on open-source projects, which may contain security flaws
[12, 24, 25], these machine learning models can capture those flaws
and leak them to the model’s output. Hence, it is crucial to validate
the output of such learning-based code generation techniques so
that the generated code is not only functionally correct, but it also
does not introduce a vulnerability / insecure coding practice.

In this paper, we present SecurityEval, a manually curated
dataset for evaluating machine-learning-based code generation
models from the perspective of software security. We collected
Python samples of different vulnerability types, covering multi-
ple categories from the Common Weakness Enumeration (CWE)
[17]. Our dataset contains 130 samples representing 75 distinct vul-
nerability types (CWEs). These samples are formatted as prompts
that could be used for a generalized source-code generation model.
We released this dataset in our repository: https://github.com/s2e-
lab/SecurityEval.

2 DATASET CONSTRUCTION

We created an evaluation dataset to measure the code quality gen-
erated by a machine learning model from the perspective of secure
coding practices. We focused on collecting samples for the Python
programming language because it is currently the most popular
language [5] and is a language developers want to work with the
most [1]. The following sections describe the sample collection
steps and how these samples were formatted to meet our goal.

2.1 Samples Collection

We mined software vulnerability examples with their mapping to a
CWE entry from four external sources:

• CodeQL [11] is a semantic code analysis engine fromGitHub
that can be used to query code and detect vulnerabilities. Its
documentation includes different examples of source code
with bad and good patterns. Hence, we inspected its docu-
mentation and retrieved a total of 36 Python samples con-
taining bad patterns.

• The CommonWeakness Enumeration (CWE) [17] is a
well-known resource for researchers and practitioners. It
enumerates common software and hardware weaknesses
that lead to a vulnerability. Almost every entry in the CWE

https://orcid.org/0000-0002-7984-3611
https://orcid.org/0000-0001-8743-2516
https://doi.org/10.1145/3549035.3561184
https://doi.org/10.1145/3549035.3561184
https://github.com/s2e-lab/SecurityEval
https://github.com/s2e-lab/SecurityEval

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Siddiq and Santos

list provides examples of insecure code in different program-
ming languages (e.g., Java, C, PHP etc.). We extracted a total
of 11 Python samples from it.

• Sonar Rules: SonarSource [23] is a company that has a static
analyzer for finding code problems in multiple programming
languages. Its static analyzer contains around 4,800 rules
to find implementation issues, such as bugs, vulnerabilities,
security hotspots, and code smells. For Python, they have
a total of 217 rules, including 29 vulnerability-related rules.
The online documentation of these rules contains compliant
and non-compliant examples. Thus, we retrieved 34 samples
of non-compliant examples from it.

• Pearce et al. [20] investigated the frequency and circum-
stances in which GitHub Copilot may generate insecure code.
The study focused on 18 CWEs to create different scenarios
for GitHub Copilot, where most of the scenarios are adapted
from CodeQL [11] and for different languages. We included
4 of their Python examples in our dataset.

We chose the first three sources because they are resources
widely used by researchers and practitioners when studying vul-
nerabilities. Furthermore, we included samples by Pearce et al. [20]
because, to our knowledge, it is the first peer-reviewed work to
investigate security problems in ML-based code generation tech-
niques.

After collecting the samples above, we obtained a total of 85
samples. Therefore, to further enrich our dataset, we created extra
45 examples ourselves. Though almost every entry in the CWE list
has examples in different programming languages, they are mainly
written in Java, C/C++, PHP, C#, and Perl. Since these weaknesses
can be present in other programming languages besides the ones
exemplified in the CWE entry, we follow the same pattern/structure
described in the provided examples to create an example of insecure
code in Python. We focused on covering vulnerability types (CWEs)
other than the ones already covered by the 85 samples previously
collected.

2.2 Samples Formatting

For ML-based code generation techniques, we need to provide
the model with a prompt that will provide some context. With
the prompt given as input, the code generation model generates
the code. Therefore, after collecting the sample code snippets, we
manually converted them to a specific format suitable for code
generation techniques.

Our dataset is released following JavaScript Object Notation
Lines (JSONL) format, in which each line contains a JSON object.
The JSON object has three key-value pairs:

• ID: It identifies the sample uniquely. The ID is formatted
in this way: {CWE-ID}_{Source}_{Serial}.py. The CWE-
ID indicates which CWE this sample is related to. Source
indicates from where the sample was extracted (i.e., CodeQL
[11], the CWE list [17], Sonar Rules [23], Pearce et al. [20] or
created by the authors). Serial is a numerical value starting
from 1. For example, an ID equals to CWE-020_codeql_1
means this sample is for evaluating CWE-020: Improper
Input Validation, is adapted from CodeQL [11] example, and
it is first in serial.

• Prompt: The prompt is a partial source code that can be used
as input for code generation techniques. It typically contains
code statements, such as a function definition together with
arguments and a docstring that describes the method’s func-
tionality, as well as import statements, variable declarations,
etc.

• Insecure Code: It provides an example of possible vulnera-
ble code that can be generated by models. The insecure code
outlines how the prompt can lead to vulnerable code. These
insecure codes may contain other vulnerabilities and may
not fully cover the intended function of the prompt.

For instance, the code snippet below1 has an example of a sam-
ple created by the authors for the CWE-798 (Use of Hard-coded
Credentials). The prompt is a function (getDBConnection) and a
docstring about the expected function behavior (i.e., to “return a
mysql database connection”). The “insecure code” attribute shows
an example of a code snippet that hardcodes the expected username
and password when connecting to a MySQL database.
{"ID": "CWE-798_author_1.py",
"Prompt": "import mysql.connector

def getDBConnection():
'''

return a mysql database connection
'''",

"Insecure_code": "import mysql.connector
def getDBConnection():

'''
return a mysql database connection

'''
return mysql.connector.connect(user='user', password='password',

host='host', database='database')"}

2.3 Dataset Overview

As shown in Table 1, our SecurityEval dataset has a total of 130
samples, covering 75 vulnerability types (CWEs). The first column
in this table indicates the vulnerability type (CWE), and the four
remaining columns are for the respective data source with the
number of examples taken from them. The sixth column presents
the number of examples for a particular CWE collected.

According to the CWE list version 4.8 [17], weaknesses related
to software development are categorized into 40 categories. We
cover 28 categories out of these 40 categories. We exclude the
following categories as they are not related to Python or do not have
enough explanation from the context of Python: Complexity Issues,
Documentation Issues, Encapsulation Issues, Memory Buffer Errors,
Pointer Issues, String Errors, Lockout Mechanism Errors, Permission
Issues, Signal Errors, State Issues, Type Errors, and User Interface
Security Issues.

3 APPLICATION

Our dataset can be used to investigate the security of code gen-
eration techniques by giving our prompts to the technique and
then inspecting the generated code. This inspection can be per-
formed manually or automatically. For example, one can manu-
ally compare each generated code to the insecure code samples in
our dataset. Alternatively, a researcher can rely on existing static
analyzers (e.g., Bandit) to automatically find vulnerabilities in the
generated code and then rely on the alarms raised by the tool. If

1We added indentation to this snippet for clarity. In the actual JSONL file in the released
dataset, all JSON objects are flattened out in a single line.

SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation TechniquesMSR4P&S ’22, November 18, 2022, Singapore, Singapore

Vulnerability Type (CWE) Code
QL

CWE
List

Sonar
Rules

Pearce
et al. Authors Total Vulnerability Type (CWE) Code

QL
CWE
List

Sonar
Rules

Pearce
et al. Authors Total

CWE-020 Improper Input Validation 4 0 0 0 2 6 CWE-269 Improper Privilege Management 0 1 0 0 0 1
CWE-611 Improper Restriction of XML External Entity
Reference

1 0 4 0 1 6 CWE-283 Unverified Ownership 0 1 0 0 0 1

CWE-601 Open Redirect 1 0 4 0 0 5 CWE-284 Improper Access Control 0 0 0 0 1 1
CWE-022 Path Traversal 2 0 0 0 2 4 CWE-285 Improper Authorization 1 0 0 0 0 1
CWE-297 Improper Validation of Certificate with Host
Mismatch

0 0 4 0 0 4 CWE-306 Missing Authentication for Critical Function 0 0 0 1 0 1

CWE-327 Use of a Broken or Risky Cryptographic
Algorithm

4 0 0 0 0 4 CWE-312 Cleartext Storage of Sensitive Information 1 0 0 0 0 1

CWE-502 Deserialization of Untrusted Data 1 1 1 0 1 4 CWE-321 Use of Hard-coded Cryptographic Key 0 0 0 0 1 1
CWE-079 Cross-site Scripting 2 0 1 0 0 3 CWE-329 Generation of Predictable IV with CBC Mode 0 0 1 0 0 1
CWE-094 Code Injection 1 0 1 0 1 3 CWE-330 Use of Insufficiently Random Values 0 0 0 0 1 1
CWE-117 Improper Output Neutralization for Logs 1 0 1 0 1 3 CWE-331 Insufficient Entropy 0 0 0 0 1 1
CWE-295 Improper Certificate Validation 1 0 0 0 2 3 CWE-339 Small Seed Space in PRNG 0 1 0 0 0 1
CWE-347 Improper Verification of Cryptographic Signature 0 0 3 0 0 3 CWE-352 Cross-Site Request Forgery (CSRF) 1 0 0 0 0 1
CWE-703 Improper Check or Handling of Exceptional
Conditions

0 0 0 0 3 3 CWE-367 Time-of-check Time-of-use (TOCTOU) Race
Condition

0 0 0 0 1 1

CWE-730 Regex Injection 2 0 0 0 1 3 CWE-377 Insecure Temporary File 1 0 0 0 0 1

CWE-078 OS Injection 1 0 0 0 1 2 CWE-379 Creation of Temporary File in Directory with
Incorrect Permissions

0 0 1 0 0 1

CWE-089 SQL Injection 1 0 0 0 1 2 CWE-384 Session Fixation 0 0 1 0 0 1
CWE-090 LDAP Injection 2 0 0 0 0 2 CWE-385 Covert Timing Channel 0 1 0 0 0 1
CWE-113 HTTP Response Splitting 0 0 2 0 0 2 CWE-400 Uncontrolled Resource Consumption 0 0 1 0 0 1

CWE-116 Improper Encoding or Escaping of Output 1 0 0 0 1 2 CWE-406 Insufficient Control of Network Message
Volume

0 1 0 0 0 1

CWE-215 Insertion of Sensitive Info. Into Debugging Code 1 0 0 0 1 2 CWE-414 Missing Lock Check 0 0 0 0 1 1
CWE-259 Use of Hard-coded Password 0 0 0 0 2 2 CWE-425 Direct Request ('Forced Browsing') 0 0 0 0 1 1

CWE-319 Cleartext Transmission of Sensitive Information 0 0 0 0 2 2 CWE-454 External Initialization of Trusted Vars or Data
Stores

0 0 0 0 1 1

CWE-326 Inadequate Encryption Strength 0 0 0 0 2 2 CWE-462 Duplicate Key in Associative List 0 1 0 0 0 1
CWE-434 Unrestricted Upload of File with Dangerous Type 0 0 0 2 0 2 CWE-477 Use of Obsolete Function 0 0 0 0 1 1
CWE-521 Weak Password Requirements 0 0 2 0 0 2 CWE-488 Exposure of Data Element to Wrong Session 0 0 0 0 1 1

CWE-522 Insufficiently Protected Credentials 0 0 0 1 1 2 CWE-595 Comparison of Object References Instead of
Object Contents

0 0 0 0 1 1

CWE-643 XPath Injection 1 0 1 0 0 2 CWE-605 Multiple Binds to the Same Port 0 0 0 0 1 1

CWE-798 Use of Hard-coded Credentials 1 0 0 0 1 2 CWE-641 Improper Restriction of Names for Files and
Other Resources

0 0 1 0 0 1

CWE-918 Server-Side Request Forgery (SSRF) 2 0 0 0 0 2 CWE-732 Incorrect Permission Assignment for Critical
Resource

0 0 0 0 1 1

CWE-080 Basic XSS 0 0 0 0 1 1 CWE-759 Use of a One-Way Hash without a Salt 0 1 0 0 0 1
CWE-095 Eval Injection 0 0 0 0 1 1 CWE-760 Use of a One-Way Hash with a Predictable Salt 0 0 1 0 0 1
CWE-099 Resource Injection 0 0 1 0 0 1 CWE-776 XML Entity Expansion 1 0 0 0 0 1
CWE-1204 Generation of Weak Initialization Vector (IV) 0 0 1 0 0 1 CWE-827 Improper Control of Document Type Definition 0 0 1 0 0 1
CWE-193 Off-by-one Error 0 0 0 0 1 1 CWE-835 Infinite Loop 0 0 0 0 1 1
CWE-200 Exposure of Sensitive Info. to an Unauthorized
Actor

0 0 0 0 1 1 CWE-841 Improper Enforcement of Behavioral Workflow 0 1 0 0 0 1

CWE-209 Generation of Error Msg. Containing Sensitive
Info.

1 0 0 0 0 1 CWE-941 Incorrectly Specified Destination in a Comm.
Channel

0 1 0 0 0 1

CWE-250 Execution with Unnecessary Privileges 0 1 0 0 0 1 CWE-943 Improper Neutralization of Special Elements in
Data Query Logic 0 0 1 0 0 1

CWE-252 Unchecked Return Value 0 0 0 0 1 1

Table 1: Overview of our SecurityEval Dataset

the alarm raised by the tool matches the CWE associated with the
prompt, the generated code is likely insecure.

In the next section, we walk through an example of using the
SecurityEval dataset to evaluate the security of code generated
by a closed-source (i.e., GitHub Copilot) and an open-source (i.e.,
InCoder) code generation tool. These two models are chosen only
for demonstrative purposes on how to use the dataset; the demon-
stration presented herein does not intend to be exhaustive.

3.1 Example: Using SecurityEval to Evaluate

GitHub Copilot and InCoder

To demonstrate how to apply SecurityEval by following these two
strategies, we provided all the 130 prompts in our dataset as inputs
to two existing machine learning-based code generation tools:

• InCoder [9] is an open-source decoder-only transformer
model [30] that can synthesize and edit code via infilling.
We used the demo of the 6.7B parameter model available on
Huggingface2, where the number of tokens to generate is

2https://huggingface.co/spaces/facebook/incoder-demo

128, the temperature is 0.6 (default value)3. We manually
trim the output up to the targeted function body if the model
generates more than our expectation (i.e., generating code af-
ter completing the function body). If InCoder does not finish
generating the entire function, we use it again to generate
code using our prompt and the previously generated code
as context.

• GitHub Copilot [13] is a closed-source model behind a
paywall from GitHub. The OpenAI Codex [6], an artificial
intelligence model produced by OpenAI4, powers GitHub
Copilot. We used their Visual Studio Code extension to gen-
erate source code from prompts in our dataset.

Subsequently, we followed amanual and an automated strat-
egy to evaluate these tools. During the manual evaluation strategy,
we inspected each generated code to check whether it contains the
specific vulnerability for which the prompt is related to. During

3Temperature is a hyperparameter related to the probability of the model’s output.
The model is more confident when the temperature is low (below 1), and when the
temperature is high (over 1), the model is less certain.
4https://openai.com

https://huggingface.co/spaces/facebook/incoder-demo
https://openai.com

MSR4P&S ’22, November 18, 2022, Singapore, Singapore Siddiq and Santos

the automated evaluation strategy, we analyzed the generated code
using CodeQL [11] and Bandit [7], two static analyzers that can
detect vulnerabilities and/or security smells. Once we ran these
tools, we automatically checked whether their alarms matched the
specific vulnerability (CWE) related to the prompt used to generate
the code. For instance, if we used a prompt related to CWE-78 (OS
Command Injection), we checked the presence of CWE-78 in the
generated code. Notice that a generated code may contain other
vulnerability types and/or is not functionally correct. For exam-
ple, InCoder [9] uses the print function signature for Python 2
(we manually converted the signature compatible to Python 3 for
automated analysis).

Model CodeQL Bandit Manual

InCoder [9] 20 (15.38%) 12 (9.23%) 88 (67.69%)
GitHub Copilot [13] 24 (18.46%) 14 (10.77%) 96 (73.84%)

Table 2: Evaluating InCoder [9] and GitHub Copilot [13]

using SecurityEval

Table 2 presents the number of generated code snippets deemed
vulnerable by relying on a manual or automated strategy. The
numbers in the CodeQL and Bandit columns count the number
of times in which a sample (associated with a specific CWE) was
marked the generated code for that particular CWE (automated
strategy). The Manual column contains the number of vulnerable
generated codes after manually going through all the generated
output and checking if the generated code contains the specific
vulnerability (i.e., the designated CWE for the sample.)

From these results, we observe that most generated code snippets
contain insecure code (about 68% and 74% of code generated by
InCoder and Copilot, respectively), which highlights the importance
of evaluating generated code with respect to security concerns and
not only functionality. Moreover, although an automated strategy
decreases the time and effort in evaluating tools, they may not find
all insecure code instances. However, an automated strategy could
be helpful for quickly comparing two techniques.

4 THREATS TO VALIDITY

One threat to our work is the sources of samples. We consider four
external sources for mining vulnerability examples to create the
dataset in our work. We took the examples from the sources and
modified them according to our task. CWE list [17] and CodeQL [11]
are community-based and open-source project to enumerate com-
mon security vulnerability and detects them. Sonar Rules [23] from
SonarSource provides documentation about the definition and rules
for their static analyzers. Pearce et al. [20] is a peer-reviewed work.
Though these external sources may introduce threats to our work,
they are community-focused and widely used tools and sources for
examples and definitions of common security weaknesses.

We used GitHub Copilot [13] as a black box tool for generating
source code.We also used the demonstration hosted onHuggingface
for InCoder [9] instead of directly using the code for inference.
These tools and models are sources of external validity threats
for demonstrating the application of the dataset. Nevertheless, the
application of this dataset to verify the output of these tools was
only for demonstration purposes.

This dataset is limited to Python samples, introducing a general-
izability threat to this work. However, one of our future goals is to
extend it to other programming languages.

Finally, we manually crafted the examples from external sources
and created additional examples to enrich our dataset. In addition,
wemanually checked the output from themodel and tool after using
our dataset by generating source code. These processes introduce
internal threats to validity.

5 RELATEDWORK

Prior works [3, 8, 19, 21, 22] created vulnerability datasets (bench-
marks) for evaluating vulnerability detection/prediction techniques.
These datasets may include metadata about vulnerabilities in a spe-
cific language/platform (e.g., C/++ [8], Java [21], Android [3], etc.),
their vulnerability types (CWE), and associated patches. Unlike
these works, our dataset serves a different purpose, as it aims to
evaluate the security of automatically generated code.

HumanEval [6] is a dataset commonly used to evaluate the gen-
erated source code from docstring. It can be used to measure the
functional correctness of source code generation. It contains 164
handwritten prompts with canonical solutions from competitive
programming problems, language comprehension, algorithms, and
simple mathematical and interview problems. This dataset is used
for evaluating competition level source code generation [16] and
new state-of-the-art code generation [18]. However, it does not
focus on the security aspect of the generated code. Our dataset
consists of 130 prompts from 75 CWEs that can be used to evaluate
a code generation model from a security perspective.

Pearce et al. [20] designed 54 scenarios across 18 different CWEs
[13] to study the (vulnerable) code generated by GitHub Copilot.
These scenarios focus on GitHub Copilot, whereas our dataset is a
generalized one to use for any context-based source code generation
model and tool. Our dataset is also rich with examples from 75
CWEs with 130 scenarios.

6 CONCLUSION & FUTUREWORK

Although a code generation model can help software engineers to
develop software quickly, the generated code can contain security
flaws. In this paper, we presented SecurityEval, a dataset that
has a diverse evaluation set for testing code generation models
with respect to the presence of vulnerabilities. Our dataset has 130
Python code samples spanning 75 types of vulnerabilities (CWEs).

We also demonstrated how to apply our dataset to evaluate code
generation techniques. To do so, we used prompts from SecurityE-
val to evaluate an open-source code generation model (InCoder)
and a closed-source code generation tool (GitHub Copilot). We
demonstrated how our dataset combined with static analyzers could
be used for automated/semi-automated evaluation of the security
of the generated code.

In future work, we aim to extend the dataset to other languages
(ex: Java, C, C++, etc.). Moreover, we intend to expand the dataset to
cover other vulnerability types (CWEs). For example, SecurityEval
does not include memory buffer errors because these weaknesses
are not prevalent in Python - a memory-managed language. How-
ever, these types of errors are prevalent in languages requiring
developers to release memory (e.g., C/C++) manually.

SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation TechniquesMSR4P&S ’22, November 18, 2022, Singapore, Singapore

REFERENCES

[1] 2022. Stack Overflow Developer Survey 2021. https://insights.stackoverflow.
com/survey/2021 [Online; accessed 28. Aug. 2022].

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Edinburgh, UK) (PLDI ’14).
ACM, New York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[4] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A parallel corpus of
python functions and documentation strings for automated code documentation
and code generation. arXiv preprint arXiv:1707.02275 (2017).

[5] Stephen Cass. 2022. Top Programming Languages 2022. IEEE Spectrum (Aug.
2022). https://spectrum.ieee.org/top-programming-languages-2022

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

[7] Bandit Developers. 2022. Bandit. https://bandit.readthedocs.io/en/latest/
[8] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. A C/C++ code

vulnerability dataset with code changes and CVE summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories. 508–512.

[9] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder:
A Generative Model for Code Infilling and Synthesis. https://doi.org/10.48550/
arXiv.2204.05999

[10] Yuexiu Gao and Chen Lyu. 2022. M2TS: Multi-Scale Multi-Modal Approach Based
on Transformer for Source Code Summarization. arXiv preprint arXiv:2203.09707
(2022).

[11] GitHub. 2022. CodeQL. https://github.com/github/codeql
[12] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and

Fabio Palomba. 2022. The Secret Life of Software Vulnerabilities: A Large-Scale
Empirical Study. IEEE Transactions on Software Engineering (2022).

[13] GitHub Inc. 2022. GitHub Copilot : Your AI pair programmer. https:
//copilot.github.com

[14] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill: Multi-
token Code Completion by Jointly Learning from Structure and Naming Se-
quences. In 44th International Conference on Software Engineering (ICSE).

[15] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code pre-
diction by feeding trees to transformers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 150–162.

[16] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, et al. 2022. Competition-
Level Code Generation with AlphaCode. https://doi.org/10.48550/ARXIV.2203.
07814

[17] The MITRE Corporation (MITRE). 2022. Common Weakness Enumeration.
https://cwe.mitre.org/

[18] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. A Conversational Paradigm for Program
Synthesis. https://doi.org/10.48550/arXiv.2203.13474

[19] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris
Mitropoulos. 2021. CrossVul: a cross-language vulnerability dataset with commit
data. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 1565–1569.

[20] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri. 2022. Asleep at the
Keyboard? Assessing the Security of GitHub Copilot’s Code Contributions. In
2022 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
Los Alamitos, CA, USA, 980–994. https://doi.org/10.1109/SP46214.2022.00057

[21] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 383–387.

[22] Sofia Reis and Rui Abreu. 2021. A ground-truth dataset of real security patches.
arXiv preprint arXiv:2110.09635 (2021).

[23] SonarSource S.A. 2022. SonarSource static code analysis. https://rules.
sonarsource.com

[24] Joanna CS Santos, Anthony Peruma, Mehdi Mirakhorli, Matthias Galstery,
Jairo Veloz Vidal, and Adriana Sejfia. 2017. Understanding software vulner-
abilities related to architectural security tactics: An empirical investigation of
chromium, php and thunderbird. In 2017 IEEE International Conference on Software
Architecture (ICSA). IEEE, 69–78.

[25] Joanna CS Santos, Katy Tarrit, Adriana Sejfia, Mehdi Mirakhorli, and Matthias
Galster. 2019. An empirical study of tactical vulnerabilities. Journal of Systems
and Software 149 (2019), 263–284.

[26] Mohammed Latif Siddiq, Shafayat Hossain Majumder, Maisha Rahman Mim,
Sourov Jajodia, and Joanna CS Santos. 2022. An Empirical Study of Code Smells
in Transformer-based Code Generation Techniques. In 22nd IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM) (Limassol,
Cyprus). IEEE.

[27] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
Treegen: A tree-based transformer architecture for code generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. 8984–8991.

[28] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443.

[29] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vi-
cente Franco, and Miltiadis Allamanis. 2021. Fast and memory-efficient neural
code completion. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 329–340.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. https://doi.org/10.48550/ARXIV.1706.03762

https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://doi.org/10.1145/2594291.2594299
https://spectrum.ieee.org/top-programming-languages-2022
https://arxiv.org/abs/2107.03374
https://bandit.readthedocs.io/en/latest/
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://github.com/github/codeql
https://copilot.github.com
https://copilot.github.com
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://cwe.mitre.org/
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.1109/SP46214.2022.00057
https://rules.sonarsource.com
https://rules.sonarsource.com
https://doi.org/10.48550/ARXIV.1706.03762

	Abstract
	1 Introduction
	2 Dataset Construction
	2.1 Samples Collection
	2.2 Samples Formatting
	2.3 Dataset Overview

	3 Application
	3.1 Example: Using SecurityEval to Evaluate GitHub Copilot and InCoder

	4 Threats to Validity
	5 Related Work
	6 Conclusion & Future Work
	References

