
SQLIFIX: Learning Based Approach to Fix SQL
Injection Vulnerabilities in Source Code
Mohammed Latif Siddiq§, Md. Rezwanur Rahman Jahin§, Mohammad Rafid Ul Islam,

Rifat Shahriyar, Anindya Iqbal
Bangladesh University of Engineering and Technology

Email: 1505069.mls@ugrad.cse.buet.ac.bd, 1505065.mrrj@ugrad.cse.buet.ac.bd, rafid@openrefactory.com,
rifat@cse.buet.ac.bd, anindya@cse.buet.ac.bd

Abstract—SQL Injection attack is one of the oldest yet effective
attacks for web applications. Even in 2020, applications are
vulnerable to SQL Injection attacks. The developers are sup-
posed to take precautions such as parameterizing SQL queries,
escaping special characters, etc. However, developers, especially
inexperienced ones, often fail to comply with such guidelines.
There are quite a few SQL Injection detection tools to expose any
unattended SQL Injection vulnerability in source code. However,
to the best of our knowledge, very few works have been done to
suggest a fix of these vulnerabilities in the source code. We have
developed a learning-based approach that prepares abstraction
of SQL Injection vulnerable codes from training dataset and
clusters them using hierarchical clustering. The test samples are
matched with a cluster of similar samples and a fix suggestion
is generated. We have developed a manually validated training
and test dataset from real-world projects of Java and PHP to
evaluate our language-agnostic approach. The results establish
the superiority of our technique over comparable techniques. The
code and dataset are released publicly to encourage reproduction.

Index Terms—SQL Injection, Prepared Statement, Automatic
Fix

I. INTRODUCTION

Structured query language (SQL) is the language to interact
with relational databases. The interaction is performed using
different SQL statements. The SQL injection (SQLI) attack
exploits inputs of SQL statements. The attacks are usually
accomplished by contaminating SQL queries with special char-
acters or keywords. The attacker tries to alter the logic of the
statement to read confidential data, to modify database records,
and to corrupt/delete data. They sometimes take control of
administrative operations or issue malicious commands to the
operating system.

SQLI attacks are among the oldest and most deadly threats
to web applications since the dawn of web databases. Even
some reputed applications of large organizations fall victim
to this. In August 2014, computer security company Hold
Security found that SQL injections can be successfully used
to disclose confidential information from almost 420,000
websites [1]. Seals [2] shows that SQLI was behind stealing
the personal details of 156,959 customers from a British
Telecommunications company in 2015. Even in 2020, an SQLI
attack was used to access information from the server of Link,

§These authors contributed equally to this work.

a start-up founded on Stanford campus [3]. In the first decade
of this century, quite a few incidents of credit card information
theft and millions of dollars of fraudulent purchases caused by
SQLI were reported.

Automatic Program Repair (APR) is an increasingly popular
research area to provide automatic fix suggestions for different
types of errors/bugs. These techniques suggest some candidate
changes which may repair a given fault. These techniques are
expected to reduce significant tedious effort and time for bug
fixing by the developers in the future. Recent improvements
in advanced machine learning, especially deep learning, and
the availability of large numbers of patches enable learning-
based repair in addition to previous rule based approaches. In
this work, our objective is to develop an APR tool to mitigate
SQLI vulnerabilities with high quality.

The common suggestions to prevent SQLI include param-
eterizing queries instead of directly embedding user input in
them, escaping the characters that have a special meaning in
SQL, and checking the pattern of the parameters. However,
developers often fail to comply with such guidelines, espe-
cially when there is a tight deadline. For new/inexperienced
developers, this is not unexpected. To expose any unattended
vulnerability, there are quite a few SQL injection detection
tools. On the other hand, to the best of our knowledge, very
few works have been done to help the developers fix these
vulnerabilities quickly.

The early approaches [4]–[7] have proposed solutions for
mitigating SQLI attacks. However, none of these solutions
address the actual SQLI vulnerabilities that exist in the source
code. Only a few existing works [8], [9] attempted to generate
fix suggestions for SQLI by removing vulnerabilities from
source code. These approaches propose changes in source code
to remove SQLI vulnerabilities, whereas previous mitigating
approaches would try to fortify against the SQLI attacks. [9]
proposed to remove SQLI vulnerabilities from SQL statements
by replacing them with secure prepared statements. However,
their rule based approach is language-specific and not adaptive
to future changes in the language. Their work on Java fails
to cover advanced programming constructs such as Lambda
expression, inline methods, etc. Also, they cannot fix multi-
line queries (concatenated together). In this paper, we propose
a learning based approach that overcomes these limitations.
We have developed a solution for Java and PHP using this

language-agnostic approach. An essential requirement from
APR techniques is a natural change that sustains the readability
of changed code [10]. Our solution provides good results in
this consideration as well.

Our approach, which is highly inspired by Bader et al. [10],
is based on a hierarchical clustering where the higher nodes in
the hierarchy are more abstract than the lower ones. It creates
a dendrogram of edit patterns (the pattern we need to apply to
the tainted model to fix vulnerability) where only the leaves
contain concrete edits. When we get a new vulnerable code,
we start matching the AST (Abstract Syntax Tree) of the given
code with the “before tree” (elaborated in Section III) of an
edit pattern starting from the root of the cluster tree. We go
down the dendrogram until we find a match for our AST and
suggest the fix pattern if we find a match. We use 21 Java
projects mined from GitHub, where 14 projects are used for
training, and 7 projects are used for testing our model. In
addition, we use 6 PHP projects mined from GitHub to train
and 4 projects to test our model.

Specifically, the contributions in this paper are as follows:
• Designing an automated SQL injection fixing tool (SQLI-

FIX) that significantly outperforms the other available
similar techniques.

• Adopting a learning based approach (unlike previous rule
based ones) that is language agnostic, covers a wider
range of injections and does not degrade readability of
the source code.

• Generating training dataset (1200 for Java and 350
for PHP) and test dataset (300 for Java and 150 for
PHP) manually from real-world projects. We release data
and code to encourage reproduction: https://github.com/
RRJahin/SQLIFIX.

Our approach generates solutions for 67.52% cases for
Java, tested with 7 real-world Java projects. We compare our
approach with the comparable approach [9], which generates
correct solutions for 23.67% cases on the same test set. We
extend our approach for PHP, which generates 41.33% correct
solutions on an independent test set.

II. MOTIVATING EXAMPLES

In this section, we present some examples that depict the
objective of SQLIFIX. In Table I and II, we illustrate an
example demonstrating the utility of our approach. There is an
SQL query with multiple conditions and another select query
is embedded in a condition. This query is vulnerable to SQL
Injection in several ways. For example, if the input for NAME
is ‘John’ OR 1=1, this query will provide IDs of all students
from the STUDENTS table instead of the information for the
row with NAME = ‘John’ assuming that all other conditions
are satisfied.

This vulnerability can be removed by using PreparedState-
ment class instead of using Statement class from JDBC.
Because for PreparedStatement class, the database engine
doesn’t combine the bound variables into the SQL statement
and then parse the whole thing; the bound variables are kept
separate and never parsed as a generic SQL statement. In the

TABLE I
SOURCE CODE

String sql = "SELECT ID FROM STUDENTS WHERE"
+ " NAME = "+ name + " AND PATRONYMIC ="
+ patro + "AND DATE_OF_BIRTH = "
+ dob + " AND GROUP_ID = "
+ "(SELECT ID FROM GROUPS WHERE NUMBER = "
+ groupNum+ ")";

Statement ps = con.createStatement();
rs = ps.executeQuery(sql);

corresponding changed code presented in Table II, i.e., code
snippet after applying the fix suggestion, the vulnerability is
removed without reducing naturalness or readability.

TABLE II
CHANGED CODE

String sql = "SELECT ID FROM STUDENTS WHERE "
+ "NAME = ? AND PATRONYMIC = ? "
+ "AND DATE_OF_BIRTH = ? "
+ "AND GROUP_ID = (SELECT ID FROM GROUPS "
+ "WHERE NUMBER = ?")";

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,name);
ps.setObject(2,patro);
ps.setObject(3,dob);
ps.setObject(4,groupNum);
rs = ps.executeQuery();

The target of SQLIFIX is to generate fix suggestions from
this type of vulnerable code, keeping readability unchanged.
We present some more examples generated for real-world Java
and PHP projects in Table III and IV. These cover different
types of injections that we can successfully address.

• Source Code 1: In this example, there is a single payload,
response. By varying payload for this variable, we can
simulate different types of SQLI. For example: if the
payload is 105’, it causes an error but hackers can gather
information by this Error-Based SQLI before launching
the actual attack.

• Source Code 2: In this example, there are multiple scopes
for launching SQLI. If the payload for the variable initial
is Mr. --, then the SQLI is occurred for UPDATE Query.
If the payload for countryname is X) OR 1=1; --, then
this is an example of SQLI by Tautologies.

• Source Code 3: In this example, there are multiple ways
to launch SQLI. If the payload of the variable loc is X));
DROP Users; -- , hackers can launch SQL Injection
with Piggybacked Query.

• Source Code 4: In this example, it is an SQLI by LIKE
query and column number mismatch. For example, if
the payload for productName is UNION ALL SELECT
9,9, 9,’ Text’, 9 FROM SysObjects WHERE ‘’ = ‘’,
then result set of this query will show all the rows in the
SysObjects table and will also show constant row values
for each row in the SysObjects table defined in the query
[11].

https://github.com/RRJahin/SQLIFIX
https://github.com/RRJahin/SQLIFIX

• Source Code 5: In this example, there is a Second Order
SQLI. If the payload for the variable uname is X; DROP
Users; --, then the first query safely stores the input in
the database. But the second query causes an SQLI. By
using payload X UNION select * from CreditDetails,
it can also cause Union-Based SQLI.

• PHP Source Code 1 and 2: In those example source
codes for PHP, various types of SQLI such as, Error-
Based SQLI, SQLI by Piggybacked Queries etc. can
occur.

III. METHODOLOGY

Our approach for SQLIFIX can be divided into three main
components.

1) The data collection and preparation phase,
2) Model building and learning phase,
3) Prediction phase.

Here, we will present an overview of the above three phases
and elaborate on each component in subsequent subsections.
The conceptual flow of the whole approach is shown in
Figure 1. In the data collection phase, we mined various Java
projects from GitHub and extracted the functions that have
SQL injection vulnerability to generate our training dataset.
We also created corresponding hand-crafted fixes for the SQLI
vulnerable code snippets. Then, we feed the training data to
a hierarchical clustering based model in the learning phase. It
would cluster the similar type of changes together and help
to match the structure of a given code to previously seen
structures and do accurate predictions later in the prediction
phase. We relied on static analysis warnings to prepare the
training data and evaluate our predicted fixes.

A. Data Collection and Preparation

We mined 40 random Java projects from GitHub using their
API1. Then, we used SpotBugs2 to identify the codes that have
SQL injection vulnerability. From the 40 projects mined from
GitHub, we found 21 projects that were vulnerable to SQL
injections using SpotBugs. We used these vulnerable projects
to create our initial corpus. Then, we separated them into two
groups, i.e., training set and testing set. A detailed description
of the two groups is given below.

1) Training Set: The training set consists of 14 projects (Ta-
ble - V) out of the 21 projects which we found to be vulnerable
to SQL injections. To prepare these projects for our model,
we created a java file for each vulnerable method that exist
in training data and paired them with their “Prepared State-
ment” solution by following the OWASP guidelines [12]. The
vulnerable code and the fix code are dubbed as “before code”
and “after code”, respectively throughout the whole paper. In
total,we got 1200 training data (tainted methods) from the 14
vulnerable real world projects. This number is sufficient for
training a hierarchical clustering based model as we made sure
that we covered all possible patterns of SQL injection.

1https://developer.github.com/v3/
2https://spotbugs.github.io/

2) Test Set: The test set is entirely made from the remaining
7 vulnerable projects (Table VII). As test data, we have about
300 files having about 430 infected methods detected by
SpotBugs. After the training is done, we evaluated our model
using this data. As the test data came from projects which were
not in the training set, there is no scope for data leakage.

B. Data Preprocessing

We used a tree-differencer, GumTree (Falleri et. al. 2014
[13]), to determine lines that are different in the vulnerable
code and its fix code. These lines were parsed using Java-
Parser3 to make an AST (Abstract Syntax Tree). We saved
both the AST of vulnerable code snippet and that of the
patch into JSON files which became the input for our training
mechanism. We also used the SQL parser, GSP4, to parse the
SQL query. Next, we replaced the Java representation of the
SQL query with the AST received from GSP into the input
JSON files.

These prepared input files contain the following informa-
tion.

• before code: The vulnerable code snippet that gets mod-
ified to be fixed.

• after code: The code snippets that have been modified
to fix the vulnerability.

• before tree: The AST representation of the before code.
• after tree: The AST representation of the after code.
We created a similar dataset for PHP to show that our

learning model is language agnostic. There are 350 training
data and 150 test data for PHP. The evaluation results for both
datasets are elaborated in Section IV.

C. Training Model

SQLIFIX uses complete-linkage clustering, an agglomera-
tive hierarchical clustering algorithm that creates a hierarchy
of edit patterns. The higher we go in the hierarchy, the more
generalized the edit patterns become. We achieve this gener-
alization by merging the edit patterns through anti-unification
(Kutsia et. al. [14]) which is an approach of generalization
among different symbolic expressions. Our work is inspired
by GetaFix (Bader et. al. [10]).

We adopted nearest neighbor chaining algorithm to speed
up the clustering process. As mentioned before, we used anti-
unification to merge two nodes to achieve abstraction for the
higher order nodes. First, we anti-unify two before tree nodes
and after tree nodes to obtain a new edit pattern containing
a more abstract before tree and after tree. We introduced
“holes” (pattern variables) in place of “variables” and other
expressions in the merged pattern. These holes represent the
parts of the tree where concrete edits differ in the original
trees.

We used these holes to determine the distance between
two nodes in the hierarchical structure. As the complete-
linkage hierarchical clustering algorithm warrants the merging

3https://javaparser.org/
4http://www.sqlparser.com/

https://developer.github.com/v3/
https://spotbugs.github.io/
https://javaparser.org/
http://www.sqlparser.com/

TABLE III
SOME EXAMPLES OF FIXATIONS GENERATED FOR JAVA

Possible Types of SQLI: Error-Based SQLI
Source Code 1 Changed Code 1
String sql = "select accounts.* ,fName, lName "

+ "from users inner join "
+ "account_holders as ah on ah.user_id = "
+ "users.id inner join accounts on "
+ "accounts.id = ah.a where account.id = "
+ response +";";

Statement ps = con.createStatement();
rs = ps.executeQuery(sql);

String sql = "select accounts.* ,fName, lName "
+ "from users inner join "
+ "account_holders as ah on ah.user_id = "
+ "users.id inner join accounts on "
+ "accounts.id = ah.a where account.id = ?;"

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,response);
rs = ps.executeQuery();

Possible Types of SQLI: SQLI by Tautologies
Source Code 2 Changed Code 2
Statement ps = con.createStatement();
rs = ps.executeUpdate("Update Users set firstname
= "+ initial+"+ firstname where countryid =
(select countryid from Country where countryname =
"+ countryname+");");

PreparedStatement ps = con.prepareStatement("Update
Users set firstname = ? firstname where countryid
= (select countryid from Country countryname =
?);");
ps.setObject(1,initial);
ps.setObject(2,countryname);
rs = ps.executeUpdate();

Possible Types of SQLI: SQLI with Piggybacked Query
Source Code 3 Changed Code 3
String sql = "Insert into User(uname,upass,ulocid)"

+ "values("+name+","+pass+",(select locid "
+ "from location where loc="+loc+"));";

Statement ps = con.createStatement();
rs = ps.executeUpdate(sql);

String sql = "Insert into User(uname,upass,ulocid)"
+ "values(?,?,(select locid "
+ "from location where loc=?));";

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,name);
ps.setObject(2,pass);
ps.setObject(3,loc);
rs = ps.executeUpdate();

Possible Types of SQLI: SQLI with LIKE query and column number mismatch
Source Code 4 Changed Code 4
String sql = "SELECT productName FROM allProduct "

+ "WHERE productName LIKE "+productName+";";
Statement ps = con.createStatement();
rs = ps.executeUpdate(sql);

String sql = "SELECT productName FROM allProduct "
+ "WHERE productName LIKE ?;"

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,productName);
rs = ps.executeUpdate();

Possible Types of SQLI: Second Order SQLI and Union-Based SQLI
Source Code 5 Changed Code 5
String sql = "Insert into Users (username,email)
values(?,?");";
PreparedStatement ps = con.prepareStatement(sql);
// No problem to store in DB
ps.setObject(1,uname);
ps.setObject(2,uemail);
ps.executeUpdate();
Statement sta = con.createStatement();
// Possible Scope for SQLI
ResultSet rs = sta.executeQuery("Select * from
Users Where username = "+uname+";");

String sql = "Insert into Users (username,email)
values(?,?");";
PreparedStatement ps = con.prepareStatement(sql);
// No problem to store in DB
ps.setObject(1,uname);
ps.setObject(2,uemail);
ps.executeUpdate();
PreparedStatement sta = con.prepareStatement("Select
* from Users Where username = ?;");
// Protected against SQLI
sta.setObject(1,uname);
ResultSet rs = sta.executeQuery();

TABLE IV
SOME EXAMPLES OF FIXATIONS GENERATED FOR PHP

PHP Source Code 1 PHP Changed Code 1
$name = $_POST[’name’];
$conn->query("SELECT * FROM myTable WHERE
name=’$name’");
$conn->close();

$name = $_POST[’name’];
$stmt = $conn->prepare("SELECT * FROM myTable
WHERE name= ?");
$stmt->bind_param("s", $name);
$stmt->execute();
$stmt->close();

PHP Source Code 2 PHP Changed Code 2
$conn->query("INSERT INTO userTable
(name, email) VALUES (’{$_POST[’name’]}’,
’{$_POST[’email’]}’)");
$conn->query("UPDATE guestTable SET
name = ’{$_POST[’name’]}’ WHERE email =
’{$_POST[’email’]}’");

$stmt1 = $conn->prepare("INSERT INTO userTable
(name, email) VALUES (?, ?)");
$stmt2 = $conn->prepare("UPDATE guestTable SET
name = ? WHERE email = ?");
$stmt1->bind_param("ss", $_POST[’name’],
$_POST[’email’]);
$stmt2->bind_param("ss", $_POST[’name’],
$_POST[’email’]);
$stmt1->execute();
$stmt2->execute();
$stmt1->close();
$stmt2->close();

Fig. 1. Conceptual model of our methodology

TABLE V
PROJECTS USED FOR JAVA TRAINING SET

https://github.com/MahnuelO/InventarioWeb
https://github.com/hencjo/summer-migration
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/Minal11/UserVerificationSystem
https://github.com/zxybazh/Online-Book-Store-System
https://github.com/zj386018/zjjava
https://github.com/zooncool/crawledemo
https://github.com/xingkuan/vSync
https://github.com/victormartor/TFG PC
https://github.com/VeePeeK/JavaGit
https://github.com/tmwsiy2012/fiftyfiftystockscreener
https://github.com/texas-mule/banking-app-devkala48
https://github.com/sashanksridhar/Ecomerce-
https://github.com/princekm/GUI-DBMS

of two nodes with the smallest distance. We achieved this
by calculating the maximum information gain and coverage

TABLE VI
PROJECTS USED FOR PHP TRAINING SET

https://github.com/mmockelyn/GC2i
https://github.com/yashkrsingh/Pool-Your-Cab
https://github.com/Shivanithakur94/newfilesj
https://github.com/cumbach/ParadataChrisUmbach
https://github.com/cumbach/ParadataChrisUmbach
https://github.com/flowerszhong/hfx

between two nodes. We considered two nodes to have more
information if they have similar sub-tree structure, but higher
hole count after merging. The result of this clustering process
is a dendrogram containing the abstract edit patterns as the
middle nodes and the concrete edits as leaves.

To optimize further, if the new edit pattern is similar to any
of the two before tree nodes from which the new edit patter
is generalized, that before tree node is considered the parent

https://github.com/MahnuelO/InventarioWeb
https://github.com/hencjo/summer-migration
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/Minal11/UserVerificationSystem
https://github.com/zxybazh/Online-Book-Store-System
https://github.com/zj386018/zjjava
https://github.com/zooncool/crawledemo
https://github.com/xingkuan/vSync
https://github.com/victormartor/TFG_PC
https://github.com/VeePeeK/JavaGit
https://github.com/tmwsiy2012/fiftyfiftystockscreener
https://github.com/texas-mule/banking-app-devkala48
https://github.com/sashanksridhar/Ecomerce-
https://github.com/princekm/GUI-DBMS
https://github.com/mmockelyn/GC2i
https://github.com/yashkrsingh/Pool-Your-Cab
https://github.com/Shivanithakur94/newfilesj
https://github.com/cumbach/ParadataChrisUmbach
https://github.com/cumbach/ParadataChrisUmbach
https://github.com/flowerszhong/hfx

TABLE VII
PROJECTS USED FOR JAVA TESTING SET

https://github.com/Ronak6892/iTrust-v23
https://github.com/gschmidt1/Momow1
https://github.com/IraDaniel/java-homework-10
https://github.com/danielmmy/Naegling-GUI
https://github.com/rmariscal13/Java BBDD
https://github.com/vicarmocanu/Hotel-Management---Java
https://github.com/npafitis/EPL441Clinic

TABLE VIII
PROJECTS USED FOR PHP TESTING SET

https://github.com/NukeVietCMS/module-shops
https://github.com/Ricky7/butik online
https://github.com/urki/urki-test-project
https://github.com/jbennett122/JBENNETT CS418

of the other one which is dissimilar. This helps to reduce the
tree height as all the nodes producing similar pattern after
anti-unification are children of a single node.

Since hierarchical clustering algorithms cluster the different
patterns in a hierarchical structure, it does not need more data
like the usual learning algorithms. Instead, it relies heavily on
the variation of patterns in data.

D. Fixer

After the training is done, the model is saved as a large
tree with a common root. In the dendrogram, every node
represents an edit pattern which were the abstract edit result
of the merging of its children. The leaves represent concrete
edits. When we get a test code (vulnerable Java method), we
use Static Analyzer to spot all the vulnerable queries present
in the method and then use JavaParser to track all the lines
associated with each query. After that, we generate separate
AST for each of them and start matching those one at a time
with every node of the dendrogram, starting from the root. We
make our way down the tree and match the given AST with the
“before tree” of the abstract edit patterns. We stop checking
the children of a node if that node’s “before tree” does not
match with the given AST. For the matching mechanism, we
followed the matching criteria from GetaFix. When we reach
to a leaf node in this way, that leaf’s “after tree” gives us the
pattern that will fix our vulnerable test code. Here we have
used a slightly modified anti-unification method to identify
the variables that serve the same purpose with a different
name as these variables need to be replaced to generate the
actual suggestion. The anti-unification used in this case goes
on recursive call if only type and number of children are same,
whereas, for the general version the variable name also needs
to be same along with the other two to do the same.

IV. RESULTS

In this section, we discuss the experimental results and
relevant findings of our work.

A. SQLIFIX for Java

As discussed earlier, we developed SQLIFIX by training
with the dataset from Java projects and then from PHP projects

following the same approach. We took 300 Java files from 7
projects as the testing dataset that were not included in the
training dataset. The list of projects can be found in Table
V and Table VII. From there, 430 code segments containing
vulnerable queries were separated. Our model generated solu-
tions for 291 of these 430 code segments (67.52%). Then we
replaced the buggy codes with fix suggestions and again tested
them with SpotBugs. This time 78.69% of the vulnerabilities
previously detected were considered benign by SpotBugs. We
manually inspected the remaining suggestions. Out of these,
19.93% of the suggestions needed a little tweak in variable
names and then got accepted. Only 1.37% of the suggestions
were found irrelevant. Here is an example of a suggestion that
required little modification:

Statement stmt = connector.createStatement();
String snewer = "select userid from usersr

where username='" + s + "'";
ResultSet rs = stmt.executeQuery(snewer);

Input Code Segment

String snewer = "select userid from ?

where username='?'";

PreparedStatement stmt =

connector.prepareStatement(snewer);

stmt.setObject(1,usersr);

stmt.setObject(2,s);

ResultSet rs = stmt.executeQuery();

Generated Suggestion

In the query of the generated suggestion, ‘usersr’ should
not be replaced with a place holder. Hence, it requires some
attention from the developer.

Number Percentage
Vulnerable Code Segment 430
Solution Found 291 67.52%
Accurate (Among the Solutions) 229 78.69%
Close (Among the Solutions) 58 19.93%
Unrelated (Among the Solutions) 4 1.37%

B. SQLIFIX for PHP

To show that our model is language agnostic, we created a
dataset of 350 training data from 6 projects and 150 test data
from 4 PHP projects. The list of projects can be found in Table
VI and Table VIII. Our model generated suggestions for 130
test samples (86.67%). We analyzed our result and it provided
62 accepted fixations (41.33% of total test data). Our tool has
some difficulties in providing solutions for PHP as the string
structure can be different in PHP than in Java. For example,
PHP supports the single-quoted string where Java does not.

C. Comparison with the PSR algorithm

Prepared statement replacement algorithm (PSR) [9], a rule
based SQLIV fixer, gathers information from source code

https://github.com/Ronak6892/iTrust-v23
https://github.com/gschmidt1/Momow1
https://github.com/IraDaniel/java-homework-10
https://github.com/danielmmy/Naegling-GUI
https://github.com/rmariscal13/Java_BBDD
https://github.com/vicarmocanu/Hotel-Management---Java
https://github.com/npafitis/EPL441Clinic
https://github.com/NukeVietCMS/module-shops
https://github.com/Ricky7/butik_online
https://github.com/urki/urki-test-project
https://github.com/jbennett122/JBENNETT_CS418

containing SQLIVs and generates secure prepared statement
code that maintains functional integrity. We have collected
the source code of the PSR algorithm from the authors. Our
SQLIFIX generates solutions for 67.52% cases for Java, tested
with 7 real-world Java projects. PSR generates solutions for
23.67% cases on the same test set. So, our SQLIFIX performs
significantly better than PSR. We also extend SQLIFIX for
PHP, which generates 41.33% correct solutions on an inde-
pendent test set.

D. Limitations of the PSR algorithm

We found the following limitations in the PSR algorithm
that were overcome by SQLIFIX.

• Style Dependencies: The PSR algorithm has some style
dependency issues. For example:

public ResultSet getUser(String id)
{

Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "select * from user where ID ="+id;
ResultSet rs = st.executeQuery(q);
ResultSet rs;

}

If the vulnerability is encapsulated as the previous code
format, the PSR algorithm can not provide a solution.
The correct style format should be:

public ResultSet getUser(String id) {
Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "select * from user where ID ="+id;
ResultSet rs = st.executeQuery(q);
return rs;

}

• Missing Access Modifier: The vulnerability container
function and class should have an access modifier, i.e.,
public, private, and protected. Otherwise, the PSR algo-
rithm can not provide any solution. For example:

class UserDB {
void updateUser(String init, String id) {

Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "Update userTable "+

"Set userName = "+init+" userName "+
"where userID = "+id;

st.executeUpdate(q);
}

}

The PSR algorithm could not provide a solution for the
previous code because there is no access modifier before
class (or function).

• Annotation Before Function: To refactor the vulnerable
code, there should be nothing between the class name
and function name, which contains the vulnerabilities.
Otherwise, the PSR algorithm can not fix them. For
example, if there is an annotation before the function
name, it can not provide a solution.

class UserDB {
@override

public ResultSet getUsersInfo(String response) {
Connection conn = DB.getConnection();
String sql = "select fName, lName "

+ "from users inner join "
+ "acc_holders as ah on ah.userID = "
+ "users.id inner join accounts on "
+ "accounts.id = ah.a "
+ "where account.id = "
+ response +";";

Statement ps = conn.createStatement();
return ps.executeQuery(sql);

}
}

In the previous code snippet, no solution was available
because there is an annotation between class and function
name.

• Multi-line String: The PSR algorithm fails to provide a
solution if the SQL query string is a multi-line string. For
example:

void removeUser(Connection conn, String id) {
Statement st = conn.createStatement();
String sql = "Delete from userTable "

+ "where userID = "+id;
st.executeUpdate(sql);

}

In the previous example, String variable q is declared
with multiple lines of code, which caused the failure.

• Elimination of Comments: The PSR algorithm can not
keep single line comments in solution and can not find a
solution if there are multi-line comments. For example:

public void getUser(String id) {
// This comment will not be in the solution
/*

For this comment, PSR algorithm
can not find a solution.

*/
Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "select * from user "

+ "where id = "+id;
st.executeQuery(q);

}

E. Limitations of SQLIFIX

We could not find solutions for 139 code segments. Here
are the major reasons behind our failure to generate a solution:

• Presence of query modifiers like
SQL CALC FOUND ROWS, LIMIT, etc.: General
SQL Parser (GSP), the tool used for parsing SQL
queries, can not parse if these modifiers are present.

• Erroneous Code or Query: JavaParser or GSP cannot
parse.

• Batch Query: there is no real equivalent implementation
of the batch query in PreparedStatement.

These hindrances are either due to the limitation of the
tools we used for parsing (GSP, JavaParser) or because of
the structure of PreparedStatement (batch query). Correspond-
ingly, JavaParser cannot parse if there is a presence of any
error in the Java code. If these obstacles could be overcome,
the performance would have improved.

Conversely, there are some limitations of the current version
of SQLIFIX. SQLIFIX will not generate a solution for the
following cases:

• If any query generation requires project-level knowledge,
i.e., knowledge from other files or classes.

• Query prepared using string concatenation from multiple
string variables containing a portion of the query.

• Lack of coverage of all kinds of patterns in our training
data.

String query = table_name.getText();
String s1 = "select * from ";
query = s1.concat(query);

• Use of ternary operator for query selection.

String query = x < y ?
"select * from X" : "select * from Y";

In the future release of SQLIFIX, we have plans to introduce
project-level knowledge to our model. Thus, we will be able
to suggest solutions even if related code segments from other
functions or classes other than the one containing the query
are needed. The training data set is also being enriched
consistently.

V. RELATED WORK

In this work, we have developed a technique to provide an
automated fix suggestion for removing SQLI vulnerabilities.
It would use an existing approach for the detection of SQLI
vulnerability in the code. Hence, we consider SQLI detection
approaches, APR techniques, and the few automatic SQLI
repair techniques relevant to our study.

A. Automated Program Repairing Approaches

APR is an emerging area of research with a high prospect
of benefiting software developers. Researchers have been
trying to automatically repair software codes by generating
an actual fix for more than two decades [15]. Among the
well-studied works, Genprog [16]–[18] is a Genetic Algorithm
based technique using test suites. SemFix [19] and Angelix
[20] used symbolic execution to repair programs. Samimi et
al. [21] worked specifically for PHP programs. Reference [22]
parameterized a manually written bug report and extracted
necessary values from the report to repair the programs.

Application of the learning-based approaches to detect and
fix bugs have shown promising result in recent years. Among
the state-of-the-art techniques, [23], [24] presented by Tufano
et al. successfully applied Neural Machine Translation (NMT)
for program repair. Although the accuracy achieved (9%) [23]
is not acceptable, it divulges a new research avenue. They
also applied the seq2seq model with attention mechanism
[25] for repairing Java functions within a specified length
[24]. SequenceR [26] used a sequence-to-sequence model to
replace a buggy code segment with a correct one performing
similar work. They used Copy mechanism [27] to solve infinite
variable problem [28] for program repair. Another recent
research CODIT [29] applied seq2seq model with attention
[25] and copy mechanism for program repair. ENCORE [30]

used an ensemble of multiple CNN based Neural Machine
Translation models on improving the performance. Getafix
[10] uses static analysis warnings to detect possible bugs and
suggests fixes of the same bug category. It splits a given set
of example fixes into AST-level edits and learns recurring fix
patterns from these using a hierarchical clustering technique.
It finds the cluster with a close match, ranks candidate fixes
of that cluster, and selects the best match as a fix suggestion.

Facebook’s Getafix (Bader et al. [10]) is a tool that learns
from developers’ past code fixes to suggest new concrete fixes
for current bugs in the code. Our work is highly inspired
by this tool. Getafix proposes a new hierarchical clustering
algorithm for pattern mining, combining with anti-unification
(an well-known method for the generalization of different
symbolic expressions). It creates a dendrogram of possibly
related tree differences and uses the fix patterns representing
the most common code transformation. These patterns can
be abstract, containing “holes” (abstract symbols to represent
concrete patterns) where program transformations differ. In
the final step, it takes buggy source code and the dendrogram
created in the pattern mining step to produce concrete fix
patterns. It also employs a ranking technique to select the most
relevant fixes for a particular bug.

B. SQL Injection Detection Approaches

The SQLI vulnerability detection approaches can be
grouped into static and dynamic testing approaches. In this
work, we have adopted static approaches for the detection
and localization of vulnerable code snippets. Hence, while
discussing related works, our major focus would be on such
techniques.

SOFIA [31] has been proposed as a programming-language
and source-code independent tool which parses SQL state-
ments and creates parse trees that are then fed to a clustering
algorithm. Then the tree edit distance is used to measure the
distance among the parse trees. Shar and Tan [32] proposed to
detect SQLI vulnerable code by characterizing input function
into a pattern of code attributes. It used a vulnerability pre-
diction model to predict vulnerable code. This approach was
implemented for PHP applications. Shahriar and Zulkernine
[33] computed the entropy of SQL statements in source code.
When an SQL statement is invoked, they will compute the
entropy again to identify any change in the entropy measure
for that query. Then they consider that dynamic queries with
attack inputs result in an increased or decreased level of
entropy, whereas a dynamic query with benign inputs does
not result in any change of entropy value. Zhang and Wang
[34] proposed another static analysis based technique to detect
XSS and SQL vulnerabilities by using morphological analysis.
However, these works cannot detect unknown patterns of SQL
injection attacks.

AMNESIA [4] proposed a method based on program analy-
sis to implement non-deterministic finite automata-based mod-
els for all the benign queries. The scheme validates each SQL
query by finding an accepting path in the automaton. Failure
to do so would identify the query as an attack. Another notable

work CANDID [35] dynamically mined the programmer-
intended query structure on any input and detected attacks by
comparing it against the structure of the actual query issued.

Another notable work by Islam et el. [36] performed the
automatic detection of database injections for NoSQL utilizing
several supervised learning techniques and showed that these
algorithms detect injections better than the traditional rule
based systems.

C. Automatic Fix for SQL injection

SQLCHECK, proposed by Su and Wassermann [7], per-
forms a static analysis of an SQL statement parse tree and
wraps the generated input validation code statement. It stopped
all 18424 SQLIAs without generating any false positives on
five open-source web application projects. This parse tree
approach effectively identifies SQL statements structure and
detects potential SQLIAs by comparing these structures. The
parse tree approach focuses on the structure of the attacks
instead of the removal of the SQLIVs.

WebSSARI, proposed by Huang et al. [37], performs a
statical analysis of source code to find potential vulnerabilities,
including SQLIVs. This tool inserts runtime guards into the
source code that sanitizes input. It is effective to prevent
general input manipulation attacks by sanitizing input on
230 open source web applications. This solution focuses on
white and blacklisting on input rather than removal of the
vulnerability.

SQLGuard, proposed by Buehrer et al. [38], secure vul-
nerable SQL statements by comparing the statement at the
runtime with the parse tree of the original statement and
allowing execution if they match. It stopped the four SQLIA
types mentioned by their papers without any false positives
in one student created web application. SQLGuard does add a
computational overhead of dynamic SQL statement validation.

AMNESIA, proposed by Halfond and Orso [4], secure
vulnerable SQL statements through static analysis, statement
generation, and runtime monitoring. AMNESIA generates a
generalized statement structure model for a vulnerable SQL
statement by analyzing it and then allows/denies the statement
based on comparing the model at runtime. Their solution
stopped all of the SQLIAs in their attack set without generating
any false positives on five open-source web applications.
AMNESIA adds a computational overhead due to an additional
process that has to be integrated into the runtime environment.

TAPS, proposed by Prithvi et al. [39], is a symbolic
execution technique for query parameterization to make it
safe for SQL injection. The main assumption behind the
tool is it requires the web application to be transformed,
to not perform content processing or inspection of partial
query string variables. It analyzes the parsed structure of
the SQL statements and identifies data arguments for the
parameterized query. Then it traverses the program backwards
to the program statements to generate these arguments, and
substitutes the arguments with placeholders (i.e., the symbol
“?”). For the three largest applications(WarpCMS, Utopia
NewsPro, and AlmondSoft), TAPS transformed 93%, 99%,

and 81% of the analyzed control flows. However, it requires
developer intervention if either one of the following conditions
hold: (i) the main assumption of the tool is violated, (ii)
a well-formed SQL query cannot be constructed statically
(e.g., use of reflection, library callbacks, etc.), (iii) the SQL
query is malformed because of infeasible paths that cannot be
determined statically, (iv) conflicts are detected along various
paths, and (v) query is constructed in a loop that cannot be
summarized.

Aharon et al. [40] presents Code-Motion for API Migra-
tion, an algorithm that performs API migration (statement is
replaced by PreparedStatement), moving code as necessary to
preserve functionality while changing the structure as little
as possible. The proposed algorithm is language specific
(designed for Java only) and it is confined to special scenarios
such as having similar type and same number of variables
for conditional queries, no inter-procedural building of query,
etc. In the paper they have grouped SQLI vulnerabilities into
six categories, and the proposed algorithm is claimed to be
applicable for half of them. However, only one of the six is
implemented and evaluated.

Prepared statement replacement algorithm (PSR), proposed
by Thomas et al. [9], remove SQLI vulnerabilities by replacing
SQL statements with prepared statements. The static structure
of prepares statements prevents SQLIA from changing the
logical structure of a prepared statement. The generator gener-
ates automated fixes using the PSR algorithm. It can correctly
replace 94% of the SQLIAs of 4 open source projects. They
focused on removing SQLIVs instead of just mitigation and
chose automated generation to prepared statements, whereas
the manual conversion to prepared statements is tedious,
complex, and error-prone.

VI. CONCLUSION

In this paper, we have presented a learning-based SQL
injection fix tool, SQLIFIX. It prepares abstraction of SQL
Injection vulnerable codes from the training dataset and clus-
ters them using hierarchical clustering. The test samples are
matched with a cluster of similar samples and a fix suggestion
is generated. We have prepared a manually validated training
and test dataset from real-world projects of Java and PHP to
evaluate our language-agnostic approach. The results establish
the superiority of our technique over comparable techniques
by 3 times. In the future, we plan to generate a large set of
synthetic training data and try to improve the performance
of the model further. Also, since NoSQLInjection can also
be detected by machine learning based approaches [36], we
would like to explore if our approach works for fixing them
as well.

ACKNOWLEDGEMENTS

The research was partially supported by the grant ‘Code
Review Quality Measurement’ granted to the Department of
Computer Science and Engineering of Bangladesh Univer-
sity of Engineering and Technology from Samsung Research
Bangladesh.

REFERENCES

[1] D. Poeter, “Close-Knit russian hacker gang hoards 1.2 billion id creds,”
PC Magazine, 2014, accessed: 2021-01-11.

[2] T. Seals, “TalkTalk: SQL injection possible vector for isp breach,”
Infosecurity Magazine, 2015, accessed: 2021-01-11.

[3] S. Catania, “Vulnerability in link website may have exposed data on
stanford students’ crushes,” The Stanford Daily, 2020, accessed: 2021-
01-11.

[4] W. G. J. Halfond and A. Orso, “Amnesia: Analysis and monitoring for
neutralizing sql-injection attacks,” in Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’05. New York, NY, USA: Association for Computing Machinery,
2005, p. 174–183. [Online]. Available: https://doi.org/10.1145/1101908.
1101935

[5] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive tainting
and syntax-aware evaluation to counter sql injection attacks,” in
Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’06/FSE-14.
New York, NY, USA: Association for Computing Machinery, 2006, p.
175–185. [Online]. Available: https://doi.org/10.1145/1181775.1181797

[6] W. G. J. Halfond, J. Viegas, and A. Orso, “A classification of SQL
injection attacks and countermeasures,” in International Symposium
on Secure Software Engineering, 2006. [Online]. Available: https:
//www.cc.gatech.edu/∼orso/papers/halfond.viegas.orso.ISSSE06.pdf

[7] Z. Su and G. Wassermann, “The essence of command injection attacks in
web applications,” in Proceedings of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
372–382. [Online]. Available: https://doi.org/10.1145/1111037.1111070

[8] F. Dysart and M. Sherriff, “Automated fix generator for SQL
injection attacks,” in 2008 19th International Symposium on Software
Reliability Engineering (ISSRE), 2008, pp. 311–312. [Online]. Available:
https://doi.org/10.1109/ISSRE.2008.44

[9] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement
generation to remove SQL injection vulnerabilities,” Information and
Software Technology, vol. 51, no. 3, pp. 589 – 598, 2009. [Online].
Available: https://doi.org/10.1016/j.infsof.2008.08.002

[10] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360585

[11] K. Ahmad, J. Shekhar, and K. Yadav, “Classification of sql injection
attacks,” VSRD Technichal & Non-technical Journal, vol. I, no. 4, pp.
235–242, 2010.

[12] “OWASP cheat sheet series - SQL injection prevention cheat
sheet,” https://cheatsheetseries.owasp.org/cheatsheets/SQL Injection
Prevention Cheat Sheet.html, accessed: 2021-01-11.

[13] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 313–324. [Online]. Available:
https://doi.org/10.1145/2642937.2642982

[14] T. Kutsia, J. Levy, and M. Villaret, “Anti-unification for unranked terms
and hedges,” Journal of Automated Reasoning, vol. 52, p. 155–190,
2014. [Online]. Available: https://doi.org/10.1007/s10817-013-9285-6

[15] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Transactions on Software Engineering,
vol. 45, no. 1, p. 34–67, Jan. 2019. [Online]. Available: https:
//doi.org/10.1109/TSE.2017.2755013

[16] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proceedings
of the 11th Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 947–954. [Online]. Available:
https://doi.org/10.1145/1569901.1570031

[17] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Communications of
the ACM, vol. 53, no. 5, p. 109–116, May 2010. [Online]. Available:
https://doi.org/10.1145/1735223.1735249

[18] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.

USA: IEEE Computer Society, 2009, p. 364–374. [Online]. Available:
https://doi.org/10.1109/ICSE.2009.5070536

[19] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 772–781.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606623

[20] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
691–701. [Online]. Available: https://doi.org/10.1145/2884781.2884807

[21] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and L. Hendren,
“Automated repair of html generation errors in php applications using
string constraint solving,” in 2012 34th International Conference on
Software Engineering (ICSE), 2012, pp. 277–287. [Online]. Available:
https://doi.org/10.1109/ICSE.2012.6227186

[22] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically generating
bug fixes from bug reports,” in Proceedings of the 2013 IEEE
Sixth International Conference on Software Testing, Verification and
Validation, ser. ICST ’13. USA: IEEE Computer Society, 2013, p.
282–291. [Online]. Available: https://doi.org/10.1109/ICST.2013.24

[23] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Transactions on
Software Engineering and Methodology, vol. 28, no. 4, Sep. 2019.
[Online]. Available: https://doi.org/10.1145/3340544

[24] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”
in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. IEEE Press, 2019, p. 25–36. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00021

[25] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[26] Z. Chen, S. J. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-
end program repair,” IEEE Transactions on Software Engineering, pp. 1–
1, 2019. [Online]. Available: https://doi.org/10.1109/TSE.2019.2940179

[27] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying
mechanism in sequence-to-sequence learning,” in Proceedings of
the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 1631–1640. [Online].
Available: https://www.aclweb.org/anthology/P16-1154

[28] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
763–773. [Online]. Available: https://doi.org/10.1145/3106237.3106290

[29] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “Codit:
Code editing with tree-based neural models,” IEEE Transactions
on Software Engineering, pp. 1–1, 2020. [Online]. Available:
https://doi.org/10.1109/TSE.2020.3020502

[30] T. Lutellier, L. Pang, H. V. Pham, M. Wei, and L. Tan, “ENCORE:
ensemble learning using convolution neural machine translation for
automatic program repair,” CoRR, vol. abs/1906.08691, 2019. [Online].
Available: http://arxiv.org/abs/1906.08691

[31] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand, “Sofia:
An automated security oracle for black-box testing of SQL-injection
vulnerabilities,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
167–177. [Online]. Available: https://doi.org/10.1145/2970276.2970343

[32] L. K. Shar and H. B. K. Tan, “Predicting common web application
vulnerabilities from input validation and sanitization code patterns,”
in Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2012. New York, NY,
USA: Association for Computing Machinery, 2012, p. 310–313.
[Online]. Available: https://doi.org/10.1145/2351676.2351733

[33] H. Shahriar and M. Zulkernine, “Information-theoretic detection of
SQL injection attacks,” in 2012 IEEE 14th International Symposium

https://doi.org/10.1145/1101908.1101935
https://doi.org/10.1145/1101908.1101935
https://doi.org/10.1145/1181775.1181797
https://www.cc.gatech.edu/~orso/papers/halfond.viegas.orso.ISSSE06.pdf
https://www.cc.gatech.edu/~orso/papers/halfond.viegas.orso.ISSSE06.pdf
https://doi.org/10.1145/1111037.1111070
https://doi.org/10.1109/ISSRE.2008.44
https://doi.org/10.1016/j.infsof.2008.08.002
https://doi.org/10.1145/3360585
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/1735223.1735249
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/ICSE.2012.6227186
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1145/3340544
https://doi.org/10.1109/ICSE.2019.00021
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/TSE.2019.2940179
https://www.aclweb.org/anthology/P16-1154
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1109/TSE.2020.3020502
http://arxiv.org/abs/1906.08691
https://doi.org/10.1145/2970276.2970343
https://doi.org/10.1145/2351676.2351733

on High-Assurance Systems Engineering, 2012, pp. 40–47. [Online].
Available: https://doi.org/10.1109/HASE.2012.31

[34] X. Zhang and Z. Wang, “Notice of retraction: A static analysis
tool for detecting web application injection vulnerabilities for asp
program,” in 2010 2nd International Conference on E-business and
Information System Security, 2010, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/EBISS.2010.5473561

[35] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “Candid:
Dynamic candidate evaluations for automatic prevention of SQL
injection attacks,” ACM Transactions on Information and System
Security, vol. 13, no. 2, Mar. 2010. [Online]. Available: https:
//doi.org/10.1145/1698750.1698754

[36] M. R. Ul Islam, M. S. Islam, Z. Ahmed, A. Iqbal, and R. Shahriyar,
“Automatic detection of nosql injection using supervised learning,”
in 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), vol. 1, 2019, pp. 760–769. [Online].
Available: https://doi.org/10.1109/COMPSAC.2019.00113

[37] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection,” in Proceedings of the 13th International Conference on
World Wide Web, ser. WWW ’04. New York, NY, USA: Association
for Computing Machinery, 2004, p. 40–52. [Online]. Available:
https://doi.org/10.1145/988672.988679

[38] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse
tree validation to prevent SQL injection attacks,” in Proceedings
of the 5th International Workshop on Software Engineering and
Middleware, ser. SEM ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 106–113. [Online]. Available:
https://doi.org/10.1145/1108473.1108496

[39] P. Bisht, A. P. Sistla, and V. N. Venkatakrishnan, “Taps: Automatically
preparing safe SQL queries,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security, ser. CCS ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
645–647. [Online]. Available: https://doi.org/10.1145/1866307.1866384

[40] A. Abadi, Y. A. Feldman, and M. Shomrat, “Code-motion for api
migration: Fixing SQL injection vulnerabilities in java,” in Proceedings
of the 4th Workshop on Refactoring Tools, ser. WRT ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p. 1–7.
[Online]. Available: https://doi.org/10.1145/1984732.1984734

https://doi.org/10.1109/HASE.2012.31
https://doi.org/10.1109/EBISS.2010.5473561
https://doi.org/10.1145/1698750.1698754
https://doi.org/10.1145/1698750.1698754
https://doi.org/10.1109/COMPSAC.2019.00113
https://doi.org/10.1145/988672.988679
https://doi.org/10.1145/1108473.1108496
https://doi.org/10.1145/1866307.1866384
https://doi.org/10.1145/1984732.1984734

	Introduction
	Motivating Examples
	Methodology
	Data Collection and Preparation
	Training Set
	Test Set

	Data Preprocessing
	Training Model
	Fixer

	Results
	SQLIFIX for Java
	SQLIFIX for PHP
	Comparison with the PSR algorithm
	Limitations of the PSR algorithm
	Limitations of SQLIFIX

	Related Work
	Automated Program Repairing Approaches
	SQL Injection Detection Approaches
	Automatic Fix for SQL injection

	Conclusion
	References

