
Code Comment Classification with Data
Augmentation and Transformer-Based Models

Mushfiqur Rahman
Bangladesh University of Engineering and Technology

Dhaka, Bangladesh
himel6087@gmail.com

Mohammed Latif Siddiq
University of Notre Dame
Notre Dame, IN, USA

msiddiq3@nd.edu

Abstract—Effective classification of code comment sentences
into meaningful categories is critical for software comprehension
and maintenance. In this work, we present a solution for
the NLBSE’25 Code Comment Classification Tool Competition,
achieving a 6.7% improvement in accuracy over the baseline
STACC models. Our solution employs a multi-step methodology,
beginning with translation-retranslation techniques to generate
synthetic datasets. By translating the original dataset into mul-
tiple languages and back into English, we introduce linguistic
diversity that enriches the training data and improves model
generalization. We fine-tuned transformer-based architectures,
including BERT, CodeBERT, RoBERTa, and DistilBERT, on
this augmented dataset. After extensive evaluation, the best-
performing model is selected for a robust multi-label classification
framework tailored to Java, Python, and Pharo databases. The
framework is designed to address the unique challenges of each
programming language, ensuring high precision, recall, and F1
scores across all 19 categories. The source code is publicly
available at https://github.com/Mushfiqur6087/NLBSE-25, and
the trained model can be accessed at https://huggingface.co/
MushfiqurRR.

Index Terms—code comment, data augmentation, transform-
ers, BERT

I. INTRODUCTION

Code comments are a cornerstone of software documenta-
tion, offering critical insights into the design, behavior, and
usage of software systems [1]. They serve as a key resource
for developers seeking to understand and maintain software,
especially during complex evolution and maintenance tasks.
Despite their importance, the practices surrounding code com-
ments vary significantly across programming languages and
projects, with many software systems suffering from inad-
equate or inconsistent commenting [1]. This inconsistency
poses challenges to program comprehension and hampers the
ability to maintain high-quality documentation over time.

Prior studies have explored various aspects of code com-
ments, focusing on their role in program comprehension,
taxonomies, and co-evolution with source code. Rani et al.
[1] proposed a taxonomy for class comments across Python,
Java, and Smalltalk. Pascarella and Bacchelli [2] highlighted
the varied purposes of comments in Java projects. Steidl et
al. [3] analyzed comment quality, emphasizing documentation
importance. At the same time, Fluri et al. [4] demonstrated that
comments often fail to co-evolve with source code, leading to
outdated documentation.

Current tools, such as Dopamin [5] and STACC [6] baseline,
have demonstrated significant advancements in code comment
classification; however, their performance is limited by the
small size of the available dataset, which restricts the models’
ability to generalize effectively and fully leverage the capabili-
ties of transformer-based learning. To address these challenges,
our work aims to enhance code comment classification accu-
racy by leveraging advanced transformer-based models and
novel data augmentation techniques.

For that reason, we generated synthetic datasets using LLM-
generated translation, where the original code comment dataset
was translated into multiple languages and then back into
English. Studies explore the use of large language models
(LLMs) for synthetic data generation, curation, and augmen-
tation, with applications ranging from depression prediction
to addressing challenges in data augmentation and learning
paradigms [7], [8], [9]. We utilized Helsinki NLP [10] lan-
guage models to translate the dataset across 6 languages. Then,
we employed sentence transformers [11] to identify similar
data and filter out noise, ensuring higher-quality training data.
Here, noise refers to the retranslated sentences that deviate
significantly in meaning from the original comments during
translation-retranslation. Then, we evaluate multiple models
and select the best-performing architecture for a multi-label
classification framework. This framework classifies comments
and captures nuanced semantic information, leveraging deeper
transformer layers for improved context comprehension. The
model effectively accounts for language-specific comment
structures and taxonomies by tailoring the solution to each
programming language. The efficiency of our solution is
further proved in experimental results, which achieves a higher
F1 score in almost all categories. It achieves an F1-score of
0.70, surpassing the 0.63 F1-score of the existing STACC
[6] baseline. The source code of this project is publicly
available on GitHub1, and the trained model can be accessed
on Hugging Face2.

II. DATASET PREPARATION

In this section, we describe step by step how to prepare the
dataset for the tool competition [12].

1https://github.com/Mushfiqur6087/NLBSE-25
2https://huggingface.co/MushfiqurRR
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A. Dataset Summary

The dataset from the NLBSE tool competition [12] consists
of 1,733 manually labeled class comments containing 14,875
sentences extracted from 20 open-source projects written in
Java, Pharo, and Python. Each comment sentence belongs to
one or more categories specific to each programming language,
representing different types of information conveyed in the
comments.

Dataset Structure: Each row in the dataset represents a
sentence with the following attributes:

• class: The class name of the source code file where the
sentence originates.

• comment sentence: The actual text of the sentence; part
of a multi-line class comment.

• partition: Indicates the dataset split; 0 for training in-
stances and 1 for testing instances.

• combo: The class name appended to the sentence string;
is used for baseline training.

• labels: A binary list indicating the ground-truth cate-
gories to which the sentence belongs. Each sentence can
belong to one or more categories.

In Table I, Initial train data column shows the initial size of
the dataset for each language.

[
{

"comment_sentence": "this impl delegates to the old filesystem",
"french_translation": "Insérer des délégués dans l'ancien

système de fichiers",
"augmented_sentence": "Insert delegates into the old file system",
"similarity_score": "0.5195"

},
{

"comment_sentence": "available in the clustering",
"spanish_translation": "están disponibles en el cluster",
"augmented_sentence": "are available in the cluster",
"similarity_score": "0.7593"

}
]

Fig. 1. Similarity score between dataset and augmented dataset.

B. Dataset Augmentation

In this part, we implemented a process for translation and re-
translation to augment the dataset. Using pre-trained Helsinki-
NLP models [10], we set up translation pipelines optimized
for memory efficiency and faster computation by leveraging
half-precision and multi-GPU support. We translated text from
English to six different languages—German, French, Chinese,
Hindi, Spanish, and Russian—and then retranslated the text
back to English. These six languages were chosen because
they are among the most commonly used translation languages
in Hugging Face and have undergone better training, ensuring
higher translation quality. The retranslated text was added as
a new column in the dataset for each target language, and this
method was applied to all three programming languages (Java,
Python, and Pharo).

We also experimented with translation-retranslation using
10 and 16 different languages and fine-tuned a RoBERTa base
model with the resulting augmented datasets. However, these

models performed worse because the larger number of lan-
guages introduced redundancy, leading to reduced dataset di-
versity and a decline in overall dataset quality. This highlights
the importance of selecting languages that generate diverse and
meaningful augmentations for optimal model performance.

C. Filtering Augmented Dataset

In this part, we initialize a pre-trained sentence embedding
model (all-MiniLM-L6-v23) to generate embeddings for the
comments. Our goal was to compare retranslated languages’
semantic similarity with the originals and retain only those
translations that preserved the original meaning. We generated
embeddings for both the original comments and their retrans-
lated versions in various languages (e.g., German, French, Chi-
nese). Using cosine similarity, We compared each retranslation
with its corresponding original comment. In Figure 1, we can
see the similarity between original and translated datasets.
We set a similarity threshold of 0.7 to filter out translations
that deviated significantly from the original meaning. Only the
retranslated sentences exceeding this threshold were retained;
others were discarded. To create an expanded dataset, We
combined the filtered retranslated comments with the original
ones.

TABLE I
DATASET STATISTICS

Language
Number

of categories
Initial train

data

Dataset after
augmentation
and filtering

Dataset after
removing
duplicates

Java 7 7614 47169 36199
Python 5 1885 10170 8175
Pharo 7 1298 7781 6457

As shown in Table I, the size of the dataset increases
considerably after applying augmentation and filter.

D. Preprocess

Following Al-kaswan et al. [6], we concatenate the class
name and the comment sentence of the new dataset to serve
as the input to the model, using them as the separator between
them. We also removed hyperlinks, special characters and
blank spaces from the dataset.

III. MODEL AND HYPERPARAMETER SELECTION

For our multilabel classification task, we evaluated several
state-of-the-art transformer-based models, including BERT
[13], RoBERTa [14], CodeBERT [15], and DistilBERT [16]
using augmented dataset. These models were chosen for
their demonstrated success in natural language processing
(NLP) tasks, particularly in understanding complex linguistic
patterns, making them well-suited for multi-label classifica-
tion. BERT [13] captures bidirectional contextual information
effectively but can be computationally intensive due to its
large model size. RoBERTa [14] improves over BERT with
optimized pretraining techniques, but its removal of the Next

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Sentence Prediction task limits performance on certain tasks
requiring inter-sentence relationships. CodeBERT [15] lever-
ages cross-domain pretraining on programming and natural
languages, enhancing domain-specific tasks, but may under-
perform on general NLP tasks without programming context.
DistilBERT [16] achieves a performance comparable to that
of BERT with a reduced computational cost, but its smaller
size may limit its ability to handle very complex tasks.
We conducted experiments on this model, fine-tuning with
different hyperparameters. We selected the Python dataset for
this experiment, as it offered a moderate size, with fewer rows
than the Java dataset but more rows than the Pharo dataset,
striking a balance between data volume and computational
feasibility. We split the dataset into a training set (80%) and a
validation set (20%). We used Optuna4 to find the best value
of learning rate, weight decay, and batch size. Table II
shows the comparative results of the selected models after
experimenting with different hyperparameters.

RoBERTa-large achieves the highest F1 score (0.6804),
demonstrating strong performance despite being trained for
only 8 epochs. CodeBERT-base follows closely with an F1
score of 0.6782, outperforming other base models like BERT-
base (0.6291) and DistilBERT-base (0.6368), highlighting
the advantage of CodeBERT’s task-specific pretraining on
code data. While base models like DistilBERT-base are more
resource-efficient, RoBERTa-large and CodeBERT-base stand
out, with RoBERTa-large selected for its top performance
with fewer training epochs.

TABLE II
COMPARISON OF DIFFERENT MODELS

Model
Learning

rate
Weight
decay

Batch
size

Average
f1

BERT-base 9.5265E-05 0.03536 16 0.6291
BERT-large 3.0913E-05 0.06350 8 0.6459
CodeBERT-base 9.3896E-05 0.0869 16 0.6782
DistilBERT-base 5.6237E-05 0.0601 16 0.6368
RoBERTa-base 4.6431E-05 0.0337 16 0.6432
RoBERTa-large 1.9590E-05 0.0878 32 0.6804

IV. EXPERIMENT

A. Training hyperparameters

As identified in Section 3, the best-performing model for
this task is RoBERTa-large. While we have already ex-
perimented with various hyper-parameters for Python code
comment classification, Java and Pharo need to perform further
fine-tuning to determine their optimal hyper-parameters. Since
we aim to fine-tune three different versions of the same model
for these languages, we trained RoBERTa-base using a similar
approach for Java and Pharo code comment classification.

The evaluation also considers the runtime and FLOPs of
the models, but these metrics were not prioritized during
hyperparameter optimization as well as model selection, as

4https://optuna.org/

the primary goal was to maximize the F1 score and identify
the model that provides the best predictions. We trained the
model using hyperparameters from Table II and Table III.
Training epochs were 16 for Java and 24 for Pharo and Python.

TABLE III
ROBERTA-LARGE OPTIMAL HYPERPARAMETER FOR JAVA AND PHARO

Classification
Language

Learning
rate

Weight
decay

Batch
size

Average
f1

Java 2.0191E-05 0.0913 32 0.7285
Pharo 1.3269E-05 0.01618 4 0.7342

B. Implementation

We conducted our model selection and hyper-parameter
tuning using the Kaggle environment5 with dual T4 GPUs
with 15GB each. The final prediction and score calculation,
as per instructions from the tool competition, were carried out
on Google Colab6 using a single T4 GPU. The implementation
utilized Hugging Face Transformers7 for pre-trained models,
PyTorch8 for training and inference, and Optuna for hyperpa-
rameter tuning. Additionally, essential Python packages such
as NumPy9, Pandas10, and Scikit-learn11 were used for data
preprocessing and evaluation.

C. Metrics

For evaluation, we used metrics outlined by the competition
[12].

The metrics are defined as follows:

Pc =
TPc

TPc + FPc
, Rc =

TPc

TPc + FNc
, Fc = 2· Pc ·Rc

Pc +Rc
(1)

where TPc, FPc, and FNc represent the true positives, false
positives, and false negatives for category c, respectively.

The final submission score is calculated as follows:

submission score(model) = 0.60× avg. F1

+ 0.2×max

(
0,

max avg runtime − measured avg runtime
max avg runtime

)
+0.2×max

(
0,

max avg GFLOPS − measured avg GFLOPS
max avg GFLOPS

)
(2)

V. RESULTS

From Table IV, the fine-tuned RoBERTa model demon-
strates a noticeable improvement over the baseline, achieving
an average F1-score increase of +0.067. Additionally, the total
inference time and average Giga Floating Point Operations per
Second (GFLOPS) were evaluated, resulting in a submission
score of 0.41. For Java, the RoBERTa model consistently

5https://www.kaggle.com
6https://colab.research.google.com
7https://huggingface.co/transformers/
8https://pytorch.org/
9https://numpy.org/
10https://pandas.pydata.org/
11https://scikit-learn.org/
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improved across most categories, with strong gains in Expand
(+0.075) and Usage (+0.037) while maintaining perfect per-
formance in the Ownership category.

In Pharo, the most dramatic improvements were observed
in Classreferences (+0.314) and Intent (+0.129), reflecting the
model’s capacity to adapt to these specific categories despite
smaller dataset sizes. Python exhibited steady performance
improvements, with notable gains in Summary (+0.116) and
Expand (+0.108), indicating RoBERTa’s adaptability across
diverse comment types and programming paradigms.

Upon further observation, we find that larger datasets gen-
erally lead to higher F1 scores for RoBERTa (e.g., Summary
with 19,901 instances achieves 0.89), while smaller datasets
often result in lower performance (e.g., Rational with 1,643
instances achieves 0.29). However, exceptions such as Owner-
ship (980 instances, F1 = 1.00) and Intent (787 instances, F1
= 0.87) suggest that well-defined and less ambiguous patterns
can yield high scores even with limited data. The dataset
is imbalanced across categories, which may influence model
performance, and further study is required to assess its impact.
A more uniformly distributed dataset could potentially enhance
RoBERTa’s effectiveness.

While RoBERTa excels in languages like Java and Python,
it shows weaker performance in some Pharo categories, such
as Key Implementation Points (F1: 0.60, Dataset: 1,006),
Collaborators (F1: 0.48, Dataset: 394), and Classreferences
(F1: 0.60, Dataset: 212), likely due to smaller dataset sizes.
Similarly, in Python, the lowest F1 score (Development Notes:
0.35) corresponds to the smallest dataset size (903 instances),
emphasizing the impact of limited data on performance.

TABLE IV
PERFORMANCE COMPARISON OF BASELINE AND ROBERTA

Language Category
Training Dataset

Instances
Baseline RoBERTa

∆F1Prec. Rec. F1 Prec. Rec. F1

Java

Summary 19901 0.87 0.83 0.85 0.90 0.88 0.89 +0.042
Ownership 980 1.00 1.00 1.00 1.00 1.00 1.00 +0.000
Expand 2476 0.32 0.44 0.37 0.44 0.46 0.45 +0.075
Usage 8609 0.91 0.82 0.86 0.92 0.88 0.90 +0.037
Pointer 3019 0.74 0.94 0.83 0.81 0.95 0.87 +0.046
Deprecation 409 0.82 0.60 0.69 0.82 0.60 0.69 +0.000
Rational 1643 0.16 0.30 0.21 0.27 0.32 0.29 +0.084

Pharo

Key Implementation Points 1006 0.64 0.65 0.64 0.73 0.51 0.60 -0.041
Example 2490 0.87 0.90 0.89 0.92 0.89 0.91 +0.018
Responsibilities 1355 0.60 0.60 0.60 0.59 0.79 0.67 +0.076
Classreferences 212 0.20 0.50 0.29 0.50 0.75 0.60 +0.314
Intent 787 0.72 0.77 0.74 0.84 0.90 0.87 +0.129
Keymessages 1050 0.68 0.79 0.73 0.74 0.79 0.76 +0.033
Collaborators 394 0.26 0.60 0.36 0.45 0.50 0.48 +0.113

Python

Usage 2247 0.70 0.74 0.72 0.79 0.79 0.79 +0.076
Parameters 2507 0.79 0.81 0.80 0.85 0.81 0.83 +0.029
Development Notes 903 0.24 0.49 0.33 0.43 0.29 0.35 +0.023
Expand 1567 0.43 0.77 0.55 0.68 0.64 0.66 +0.108
Summary 1685 0.65 0.59 0.62 0.69 0.78 0.73 +0.116

Average 0.61 0.69 0.64 0.70 0.71 0.70 +0.067

VI. CONCLUSION

The study demonstrates that the fine-tuned RoBERTa
model consistently outperforms baseline models in multi-
label code comment classification across Java, Pharo, and
Python datasets. Significant improvements were observed in
F1-scores, particularly in categories requiring nuanced con-
textual understanding, such as Summary, Usage, and Class-
references. The integration of data augmentation through
translation-retranslation and transformer-based architectures
underscores the effectiveness of synthetic data in enhancing
classification accuracy. This research establishes RoBERTa as

a robust framework for improving code comprehension and
classification, while also highlighting the potential for further
optimization in handling imbalanced datasets and specific
linguistic contexts.
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