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Abstract—The rise of ChatGPT and GitHub Copilot has sparked
a surge in developers leveraging large language models (LLMs)
for code generation, aiming to automate software development
processes. However, these tools can generate substandard and
vulnerable code. Notably, a significant portion of developers in the
US embrace LLMs due to productivity boost. However, research
indicates that LLM-generated code may compromise security,
with users often overestimating its reliability. To address these
challenges, this proposal aims to enhance the quality and security
of generated code in outputs. The proposal includes an empirical
study of code generation models’ training sets and benchmarks
for code and security smells. It also consists of a framework,
SALLM, to automatically benchmark code generation models
from the security perspective. This proposal is a work in progress
in creating quality datasets to reinforce the code generation model
and generate standard and secure code. By establishing trust
in LLM-based tools and generating secure and standard code,
developers can confidently integrate them into their workflows
and rely on them.

Index Terms—code generation, quality, reinforced learning, se-
cure code

I. INTRODUCTION

With the recent release of ChatGPT [1] and GitHub Copilot
[2], developers are actively using code generation techniques
based on large language models (LLMs) to reduce software
development efforts [3]. A “code large language model (Code
LLM)" undergoes training on a comprehensive dataset en-
compassing textual and code elements. Its function includes
generating code tailored to a specific programming language
based on a provided prompt, a high-level specification of a
developer’s intent [4]. A 2022 survey among 500 develop-
ers in the United States employed by large-scale companies
revealed that a staggering 92% of them utilize LLMs for
code generation, both professionally and personally [5]. This
rapid and widespread adoption can partly be attributed to
developers’ perception of increased productivity facilitated
by LLMs, which streamline repetitive tasks, allowing them
to devote more attention to complex, high-level challenges
[3].

While LLM-driven code generation techniques are capable
of producing code that functions correctly, previous research
has indicated that they can also generate substandard code
and code containing vulnerabilities and security flaws [6]–
[8]. A prior study highlighted that the training sets commonly
employed to train or fine-tune LLMs often include harmful

coding patterns that can propagate to the generated code [7].
Furthermore, a recent investigation involving 47 participants
revealed that individuals utilizing the “codex-davinci-002"
LLM tended to produce less secure code than those who did
not use it [9]. Alarmingly, participants who utilized the LLM
were also more inclined to perceive their code as secure, unlike
their peers who did not rely on it for code composition.

In light of these issues of the code generation model, this
proposal focuses on generating secure and quality source
code so that developers can put trust in the code generation
model in their daily usage. The proposed research includes
an empirical study of substandard and vulnerable code in
the code generation models’ training sets and outputs. It
also includes a framework, SALLM, to benchmark the code
generation model from the perspective of security. Finally,
this research hypothesizes that a quality dataset can help to
generate standard and secure source code.

II. BACKGROUND AND RELATED WORK

This section will help understand the proposal’s core concept
and terminology.

A. Large Language Models (LLMs)

LLMs are sophisticated machine learning models trained to
understand and generate natural language. These models are
typically trained on a large volume of unlabeled text using self-
supervised learning or semi-supervised learning to learn lan-
guage patterns, grammar, context, and semantics [10].

While the main goal of LLMs is to understand natural lan-
guages, they can be fine-tuned with source code samples to un-
derstand programming languages and are called Code LLMs.
This allows them to be used for many software engineering
tasks such as code completion [11], [12], code search [13],
code summarization [14], and code generation [15]. These
works focus on improving the effectiveness of using LLMs
on software engineering tasks but not on the security and
standards of the generated code.

B. Substandard and Insecure Code Generation

While Large Language Model (LLM) based code generation
techniques can assist developers in crafting functionally correct
code and streamlining software development efforts [3], they
can generate substandard codes (i.e., code smell) and have



security concerns (i.e., vulnerabilities and security smells)
[6], [7], [9], [16]. An indication of poor system design and
implementation practices is a code smell (also known as a “bad
code smell” or “smell”) [17]. These code smells can intro-
duce software maintenance problems. A vulnerability within
a software system represents a flaw that can be exploited
to compromise its security, whereas security smells refers
to commonly employed programming patterns that have the
potential to lead to vulnerabilities [18], [19].

Fig. 1. Example of a generated code containing deserialization of untrusted
data vulnerability (CWE-502).

For example, when GitHub Copilot [2] is provided with
the prompt in 1, it generates the mentioned sug-
gestion, which contains CWE-502: Deserialization
of Untrusted Data vulnerability at line 8. Using
yaml.load() with untrusted input is unsafe because it can
deserialize YAML content into arbitrary Python objects. This
may allow attackers to execute arbitrary code on your system
if they manage to provide malicious YAML content. To avoid
this vulnerability, the user should use yaml.safe_load()
instead of yaml.load(). The safe_load() function is
designed to load only simple data structures (like dictionaries,
lists, strings, etc.) and will not execute any arbitrary Python
code.

While there is a recent growing body of peer-reviewed lit-
erature that investigated the capabilities of code generation
beyond their functional correctness but also security [6], [9],
[20]–[22], these existing studies only pinpoint the observed
issues in the generated code without investigating the train-
ing set, proposing new metrics or a way to systematically
benchmarking LLMs with respect to the security of the LLM
generated code.

III. RESEARCH PROGRESS

This research proposal addresses generating secure code from
large language models by answering the following three re-
search questions:

RQ1 Are code and security smells present in the code
generation training sets and models’ output?

RQ2 How well do LLMs perform with security-centric
prompts compared to the evaluation setting used in
their original studies?

RQ3 Can a quality dataset with respect to security and
code smells produce better code?

In the following sections, we provide the approach to answer
each research question and the corresponding findings for the
completed studies.

A. RQ1: Empirical Study on the code generation training sets
and models’ output

In this first research question, we empirically study the code
generation training sets and models’ output to determine the
presence of code and security smells.
1) Approach: We collected the samples from the training set
for the code generation models: (1) CodeXGlue [23], (2) Code
Clippy [24], and APPS [25]. We had 508,707 Python samples,
and we used Pylint [26] to find code smells and Bandit [27]
to find security smells in them. We manually validate a
statistically significant amount of samples from each dataset
for the precision of the static analyzers. For the model’s output,
we used GPT-Code-clippy [24], an open-source model with 10
configurations based on batch size and training datasets. We
also had GitHub Copilot [2] as a closed-source model. We used
the HumanEval dataset, the most commonly used benchmark
dataset for code generation models, to have output. We had
16,400 outputs from GPT-Code-clippy and 656 outputs from
GitHub Copilot. In Figure 2, we present the approach for this
research question.
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Fig. 2. Overview of our empirical study, adapted from SCAM’22 paper [7].

2) Findings: The findings of this paper have been published
in IEEE SCAM’22 [7] and are presented below:
a) Finding 1: We found a total of 264 different types of
non-security smells detected by Pylint for three commonly
used datasets. “Undefined variables”, “line too long”, “too few
public methods”, and “bad indentation” were the four most
common non-security-related code smell identified across
these datasets.
b) Finding 2: We found that a reoccurring security smell
in the training sets is an Improper Check or Handling of
Exceptional Conditions (CWE-703).
c) Finding 3: The APPS [25] dataset was the one that had
the lowest the average number of smells per sample (both
non-security related and security smells).
d) Finding 4: Code smells are present in the output of
the fine-tuned GPT-Code-Clippy model’s output. “Undefined
variables", “too-long lines”, “duplicate code”, and “unused



arguments” are the top non-security smells in the training set
and the model’s output. Using assert related to an improper
check or handling of exceptional conditions (CWE-703) is a
common security smell in the generated suggestions.
e) Finding 5: GitHub Copilot provides executable sugges-
tions, but they contain substandard coding and security smells.
“Undefined variables", “long lines," “inconsistent return state-
ments", and “unused variables" are frequent code smells in
different categories. GitHub Copilot’s suggestions for the
HumanEval dataset contain security smells, such as using
assert without properly handling exceptional conditions and
weak hash functions.

B. RQ2: Benchmarking Code Generation Models for Secure
Code Generation

During our work to answer the previous research question,
we found no approaches to automatically benchmarking code
generation models from the perspective of secure code gen-
eration. To answer this research question, first, we propose a
framework, SALLM (Security Assessment of Large Language
Models), as presented in Figure 3.
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Fig. 3. SALLM Framework overview, adapted from ASYDE’24 paper [28].

This framework contains four main components:
a) Dataset of Prompts: The creation of the framework’s
dataset of prompts involved two steps. First, we retrieved
code snippets and texts from different sources: StackOver-
flow [29], Common Weakness Enumeration (CWE) [30],
CodeQL [31], and Sonar Rules [32]. We extract their title,
content (i.e., the raw text/code collected from the source),
source URL, and CWE-ID (if available).

Second, we manually crafted a prompt from the retrieved code
snippets. For each prompt, we also created an example of an
insecure solution, i.e., a functionally correct solution, but that
has a vulnerability. This way, our dataset is a collection of
code prompts and includes executable vulnerable programs.
It also includes unit tests for functional testing and security
tests for testing the presence of a vulnerability in the generated
code.
b) Rule-based Repair: To systematically evaluate a model,
our framework provides the prompts in its dataset as input to
the LLMs: CodeGen [33], StarCoder [34], and Generative
Pre-trained Model (GPT) [10]. SALLM includes a rule-
based code repair component responsible for automatically

fixing syntax errors and removing generated code snippets
that are not compilable even after the repair attempt. We
extract code snippets from the chat-style conversations, add
the prompt code if it is not present in the generated code,
and remove any extra code after having the following patterns
(including these patterns): '\ndef', '\nif', '\n@app',
"\n'''", '\nclass'.
c) Assessment Techniques: To evaluate the model, we have
two techniques included in the framework. As described
before, the prompts include unit tests for functionality and
vulnerability. For the test-based assessment, we have a unit
test for each prompt in our dataset using Python’s unittest
module [35]. Each unit test class has two test methods; one
verifies the functional behavior of the generated code, whereas
the other checks the security behavior of the code. To detect
unsafe APIs being used in a generated code, our framework
uses CodeQL [31] for static analyzer-based assessment. Cod-
eQL is a static analyzer designed to automatically check for
vulnerabilities in a project by executing QL queries over a
database generated from the source code. CodeQL can be used
to match the function of the function call.
d) Evaluation Metrics: For functional testing, we use com-
monly used metric: pass@k metric [15], [36]. This metric
evaluates the probability that at least one out of k generated
samples are functionally correct (i.e., passed all functional
test cases). In this paper, we introduce two novel metrics
(secure@k and vulnerable@k) for measuring the se-
curity of the generated code. The vulnerable@k metric
measures the probability that at least one code snippet out
of k generated samples is vulnerable (i.e., a vulnerability
was detected by our assessment techniques). The secure@k
metric measures the probability that all code snippets out of k
samples are vulnerability-free (i.e., no vulnerability has been
detected by our assessment techniques). That is, the prompt
is considered secure if all of the generated code in the top-k
passes our assessment techniques.
1) Findings: The findings of this paper have been published
in ASYDE’24 workshop collocated with ASE [28] and are
presented below:
a) Finding 1: StarCoder generated more secure code than
CodeGen-2B, CodeGen-2.5-7B, GPT-3.5, and GPT-4 from the
perspective of vulnerable@k.
b) Finding 2: CodeGen-2.5-7B was the model that struck a
better balance between functional correctness (pass@k) and
security (secure@k).
c) Finding 3: GPT models perform better in generating func-
tionally correct code, but for most of the cases, its first
generated code is not secure.

C. RQ3: Quality Datasets for Code Generation Models (In
Progress)

In the first research question, we empirically investigate the
training sample quality and the models’ output. In the second
research question, we create a framework for automatic evalu-
ation of the generated code. In this research, we investigate if



a quality dataset and reinforcement learning can help the code
generation model to produce quality code.
1) Approach: In Figure 4, we present our approach to an-
swering this research question.
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Fig. 4. Approach for reinforcing to generate quality code.

a) Quality Dataset: As per our study [7] in RQ1, code
generation models learn security smells and insecure coding
patterns from the training set and mimic them in the output.
Recent work shows that high-quality data can improve the
model’s performance [37]. For this work, we use the Stack v2
dataset [34]. It contains over 3 billion files in 658 programming
and markup languages and has a size of about 65 terabytes. For
this RQ, we need an effective filtration process to remove and
repair vulnerable and substandard code from the Stack dataset.
We use CodeQL [31] static analyzer to filter our vulnerable
and substandard code.
b) Reinforcement Model Training: Using reinforcement
learning from human feedback (RLHF) is a common technique
in LLM training to align them to a specific purpose and has
been used in popular language models, such as Gemini [38]
and ChatGPT [1]. In reinforcement learning, the goal is to
learn a function that guides the model’s behavior, which is
called a policy, and this function learns to maximize the reward
it receives from a separate reward function based on its task
performance [39]. In this case, the policy will be to learn how
to generate more secure and standard code, and rewards will
come from two sources: (1) real human feedback through a
user study where we deploy the model as a plugin in an IDE
(e.g., MagpieBridge [40]), and (2) CodeQL static analyzer [31]
as a proxy of humans. The reinforced code LLM will try to
maximize the reward by aligning it to generate more secure
and standard code.
2) Expected Outcome: The expected outcome of this research
question will be a quality dataset that has minimized quality
issues. Using reinforcement learning should potentially lead
to a model that will produce more quality output from the
perspective of standard and secure code.

IV. CONTRIBUTION SUMMARY

In summary, my research makes the following contribu-
tions:

• We empirically analyzed training datasets for code gen-
eration models and their outputs about mimicking sub-
standard coding patterns and vulnerable code.

• We are the first to release a framework to benchmark
code generation models from the perspective of security
automatically.

• We propose a technique to create quality datasets and
reinforcement techniques to generate quality code.

V. TIMELINE FOR COMPLETION

We expect to finish the collection of quality datasets for RQ3
by May 2025. After that, we will train our reinforced model
and analyze the results by August 2025 to submit to the
FSE’26 conference. The tentative defense of this proposal is
May 2026.

VI. CONCLUSION

Software development infrastructure is being automated using
code generation models. These models are used to write,
summarize, document code, and write unit tests and CI/CD
scripts. However, insecure and substandard code generated
from these modes can harm smooth integration in the software
development ecosystem. My research proposal sheds light on
reducing vulnerable code that can effectively boost developers’
performance, reduce maintenance costs, and increase trust in
the automated tool based on Code LLM.
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